Name: _____

Date: _____

The Difference of Two Functions: (f - g)(x) = f(x) - g(x)

Algebra review worksheet: Chapter 1.

Do yourself a huge favor and **Show All Work:** step-by-step, the More the Better!

Official Cheat Sheet:

Chapter 1 Summary and Review		
Important Propert	ties and Formulas	
important rropert	ies una ronnaias	
The Distance Formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ The Midpoint Formula $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$		The Product of Two Functions: $(fg)(x) = f(x) \cdot g(x)$ The Quotient of Two Functions: $(f/g)(x) = f(x)/g(x), g(x) \neq 0$ The Composition of Two Functions: $(f \circ g)(x) = f(g(x))$
		Tests for Symmetry
Equation of a Circle $(x-h)^2 + (y-k)^2 = r^2$		<i>x-axis</i> : If replacing <i>y</i> with $-y$ produces an equivalent equation, then the graph is symmetric with respect to the <i>x</i> -axis.
Terminology about Lines		y-axis: If replacing x with -x produces an equivalent equation, then the graph is symmetric with respect to the y-axis.
Slope: The Slope–Interce	$m = \frac{y_2 - y_1}{x_2 - x_1}$ $pt Equation:$	Origin: If replacing x with $-x$ and y with $-y$ produces an equivalent equation, then the graph is symmetric with respect to the origin.
y = mx + b		Even Function: $f(-x) = f(x)$
The Point–Slope Equation: $y - y_1 = m(x - x_1)$		Odd Function: $f(-x) = -f(x)$
Horizontal Line:	y = b	
Vertical Line:	x = a	Transform ations
Parallel Lines:	$m_1 = m_2, b_1 \neq b_2$	Vertical Translation: $y = f(x) \pm b$
Perpendicular Lin	es: $m_1m_2 = -1$, or x = a, y = b	Horizontal Translation: $y = f(x \mp d)$ Reflection across the x-axis: $y = -f(x)$ Reflection across the y-axis: $y = f(-x)$ Vertical Stretching or Shrinking:
The Algebra of Functions		y = af(x)
The Sum of Two Functions: (f + g)(x) = f(x) + g(x)		y = f(cx)

Part One: Domain and Ranges of Functions

 $\frac{\text{Problem 1:}}{f(x) = \frac{6973}{x+2}}$

domain:

range:

$\frac{\text{Problem 2:}}{f(x)=x^4+x^2+17}$

domain:

range:

Problem 3:

$$f(x) = \frac{x}{x^2 + 5x + 6}$$

domain:

range:

Problem 4:
$$f(x) = \sqrt{(25-x^2)}$$

domain:

range:

THE KID WHO LEARNED ABOUT MATH ON THE STREET

Part Two: Finding Linear Functions from Points on a Graph

<u>Problem 5:</u> Find the slope-intercept form (i.e. "y=mx+b") of the line passing through the points (4,-10) , (-8,12)

<u>Problem 6:</u> Find the slope-intercept form of a line having slope=4 passing though the point (4,-10)

<u>Problem 7:</u> Find the slope-intercept form of the line perpendicular to the line of Problem 6, passing though the point (-8,12)

Part Three: Distances, Mid-Points, and Circles

<u>Problem 8:</u> Find the distance between the points (5,8) and (-1,5)

<u>Problem 9:</u> Find the mid-point between the points (-2,6) and (-4,3)

<u>Problem 10:</u> Find the equation of a circle with center (-1,2) and radius $\sqrt{7}$

<u>Problem 11:</u> Find the center and radius of a circle with the equation $(x+4)^2+(y-3)^2=36$ Graph it.

Part Four: Transforming Functions

Problem 12: Correctly identify the graphs for just the sub-problems {2,5,6}

Part Five: Graphing a function

<u>Problem 13:</u> Graph the following function; exercise particular care at the boundaries between regions

$$f(x) = \{ \begin{array}{c} 3 & \text{for } -4 \le x < 2 \\ 6 & \text{for } 3 < x < 6 \end{array} \}$$

Part Six: Composite Functions and transformations

Problem 14: For $f(x) = \sqrt{x-3}$ and g(x) = 2x, express the following: a) f(g(x))b) g(f(x))c) f(x) + g(x)d) $\frac{f(x)}{g(x)}$

