Name: \qquad

Date: \qquad

Algebra review worksheet: Chapter 1.

Do yourself a huge favor and Show All Work: step-by-step, the More the Better!

Official Cheat Sheet:

Chapter 1 Summary and Review

Important Properties and Formulas

The Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The Midpoint Formula

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Equation of a Circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Terminology about Lines

Slope: $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
The Slope-Intercept Equation:

$$
y=m x+b
$$

The Point-Slope Equation:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Horizontal Line: $\quad y=b$
Vertical Line: $\quad x=a$
Parallel Lines: $\quad m_{1}=m_{2}, b_{1} \neq b_{2}$
Perpendicular Lines:

$$
\begin{aligned}
& m_{1} m_{2}=-1, \text { or } \\
& x=a, y=b
\end{aligned}
$$

The Algebra of Functions
The Sum of Two Functions:

$$
(f+g)(x)=f(x)+g(x)
$$

The Difference of Two Functions:

$$
(f-g)(x)=f(x)-g(x)
$$

The Product of Two Functions: $(f g)(x)=f(x) \cdot g(x)$
The Quotient of Two Functions: $(f / g)(x)=f(x) / g(x), g(x) \neq 0$
The Composition of Two Functions: $(f \circ g)(x)=f(g(x))$

Tests for Symmetry

x-axis: If replacing y with $-y$ produces an
equivalent equation, then the graph is
symmetric with respect to the x-axis.
y-axis: If replacing x with $-x$ produces an
equivalent equation, then the graph is
symmetric with respect to the y-axis.
Origin: If replacing x with $-x$ and y with $-y$
produces an equivalent equation, then the
graph is symmetric with respect to the origin.
Even Function: $\quad f(-x)-f(x)$
Odd Function: $\quad f(-x)=-f(x)$

Transformations

Vertical Translation: $\quad y=f(x) \pm b$
Horizontal Translation: $\quad y=f(x \mp d)$
Reflection across the x-axis: $\quad y=-f(x)$
Reflection across the y-axis: $y=f(-x)$
Vertical Stretching or Shrinking:

$$
y=a f(x)
$$

Horizontal Stretching or Shrinking:

$$
y=f(c x)
$$

Part One: Domain and Ranges of Functions

THE KID WHO LEARNED ABOUT MATH ON THE STREET

Problem 1:
$f(x)=\frac{6973}{x+2}$
domain:
range:

Problem 2:

$$
f(x)=x^{4}+x^{2}+17
$$

domain:
range:

Problem 3:

$$
f(x)=\frac{x}{x^{2}+5 x+6}
$$

domain:
range:

Problem 4:

$$
f(x)=\sqrt{\left(25-x^{2}\right)}
$$

domain:
range:

Part Two: Finding Linear Functions from Points on a Graph

Problem 5:

Find the slope-intercept form (i.e. " $y=m x+b "$) of the line passing through the points $(4,-10),(-8,12)$

Problem 6:
Find the slope-intercept form of a line having slope=4 passing though the point (4,-10)

Problem 7:

Find the slope-intercept form of the line perpendicular to the line of Problem 6, passing though the point $(-8,12)$

Part Three: Distances, Mid-Points, and Circles

Problem 8:

Find the distance between the points $(5,8)$ and $(-1,5)$

Problem 9:
Find the mid-point between the points $(-2,6)$ and $(-4,3)$

Problem 10:
Find the equation of a circle with center $(-1,2)$ and radius $\sqrt{7}$

Problem 11:
Find the center and radius of a circle with the equation $(x+4)^{2}+(y-3)^{2}=36$ Graph it.

\square															
\square															
-															

Part Four: Transforming Functions

Problem 12:

Correctly identify the graphs for just the sub-problems $\{2,5,6\}$

Part Five: Graphing a function

Problem 13:

Graph the following function; exercise particular care at the boundaries between regions

$$
f(x)=\left\{\begin{array}{c}
3 \text { for }-4 \leqslant x<2 \\
6 \text { for } 3<x<6
\end{array}\right\}
$$

Part Six: Composite Functions and transformations

Problem 14:
For $f(x)=\sqrt{x-3}$ and $g(x)=2 x$, express the following:
a) $f(g(x))$
b) $g(f(x))$
c) $f(x)+g(x)$
d) $\frac{f(x)}{g(x)}$

Problem 15:
What is the domain of: $\frac{f(g(x))}{g(x)}$

