19-April-2015

Algebra and Trigonometry in-class worksheet TO BE HANDED IN AND GRADED! Chapter 5.1: Trigonometric Functions of Acute Angles

Name:	
Date:	

Here's what you absolutely have to know for the next 4 weeks:

$$\sin \theta = \frac{\text{side opposite } \theta}{\text{hypotenuse}},$$

$$\cos \theta = \frac{\text{side adjacent to } \theta}{\text{hypotenuse}},$$

$$\tan \theta = \frac{\text{side opposite } \theta}{\text{side adjacent to } \theta},$$

Exercise:

Find the ratio for each function evaluated for each angle:

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{1}{1}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{1}{1}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{1}{1}$$

$$\sin \alpha = \frac{\text{opp}}{\text{hyp}} = \frac{1}{1}$$

$$\cos \alpha = \frac{\text{adj}}{\text{hyp}} = \frac{1}{1}$$

$$\tan \alpha = \frac{\text{opp}}{\text{adj}} = \frac{1}{1}$$

Calculator exercises:

- 1) verify these lengths satisfy The Pythagoras' Theorem:
- 2) Find the the actual value (in degrees) for each of the two angles:

Here's an incredibly helpful (and possibly culturally insensitive) mnemo
--

"Chief SOH CAH TOA"

Exercise:

Without peeking back, write out the definitions of Sine, Cosine, and Tangent using this mnemonic

Find the *Sine*, *Cosine*, and *Tangent* for every one of the specified angles:

Some additional facts you'll need to know how to use, but you do not have memorize for this class

Reciprocal Functions

$$csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{1}{\tan \theta}$$

Do the odd-numbered problems

Given a function value of an acute angle, find the other five trigonometric function values.

9.
$$\sin \theta = \frac{24}{25}$$

10.
$$\cos \sigma = 0.7$$

11.
$$\tan \phi = 2$$

12. cot
$$\theta = \frac{1}{3}$$

13.
$$\csc \theta = 1.5$$

14. sec
$$\beta = \sqrt{17}$$

11.
$$\tan \phi = 2$$
13. $\csc \theta = 1.5$
15. $\cos \beta = \frac{\sqrt{5}}{5}$

16.
$$\sin \sigma = \frac{10}{11}$$

Do these two problems:

29. *Distance Across a River.* Find the distance *a* across the river.

30. *Distance Between Bases.* A baseball diamond is actually a square 90 ft on a side. If a line is drawn from third base to first base, then a right triangle

QPH is formed, where $\angle QPH$ is 45°. Using a trigonometric function, find the distance from third base to first base.

Here's some special angles that are extremely common on exams: 30, 45, and 60 degrees

$$\sin 45^{\circ} = \frac{\text{opp}}{\text{hyp}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \approx 0.7071,$$

$$\cos 45^{\circ} = \frac{\text{adj}}{\text{hyp}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \approx 0.7071,$$

$$\tan 45^{\circ} = \frac{\text{opp}}{\text{adj}} = \frac{1}{1} = 1$$

$$a^{2} + 1^{2} = 2^{2}$$

$$a^{2} + 1 = 4$$

$$a^{2} = 3$$

$$a = \sqrt{3}$$

We can now determine the function values of 30° and 60°:

$$\sin 30^\circ = \frac{1}{2} = 0.5,$$
 $\sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660,$ $\cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.8660,$ $\cos 60^\circ = \frac{1}{2} = 0.5,$ $\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx 0.5774,$ $\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3} \approx 1.7321.$

Solve the odd problems without a calculator. It helps to draw a triangle for each problem

Find the exact function value.

17. cos 45°	18. tan 30°
19. sec 60°	20. sin 45°
21. cot 60°	22. csc 45°
23. sin 30°	24. cos 60°
25. tan 45°	26. sec 30°
27. csc 30°	28. cot 60°

Exercise Set 5.1

1.
$$\sin \phi = \frac{15}{17}$$
, $\cos \phi = \frac{8}{17}$, $\tan \phi = \frac{15}{8}$, $\csc \phi = \frac{17}{15}$, $\sec \phi = \frac{17}{8}$, $\cot \phi = \frac{8}{15}$

3.
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
, $\cos \alpha = \frac{1}{2}$, $\tan \alpha = \sqrt{3}$, $\csc \alpha = \frac{2\sqrt{3}}{3}$,

$$\sec \alpha = 2$$
, $\cot \alpha = \frac{\sqrt{3}}{3}$

5.
$$\sin \phi = \frac{7\sqrt{65}}{65}$$
, $\cos \phi = \frac{4\sqrt{65}}{65}$, $\tan \phi = \frac{7}{4}$,

$$\csc \phi = \frac{\sqrt{65}}{7}$$
, $\sec \phi = \frac{\sqrt{65}}{4}$, $\cot \phi = \frac{4}{7}$

7.
$$\csc \alpha = \frac{3}{\sqrt{5}}$$
, or $\frac{3\sqrt{5}}{5}$; $\sec \alpha = \frac{3}{2}$; $\cot \alpha = \frac{2}{\sqrt{5}}$, or $\frac{2\sqrt{5}}{5}$

9.
$$\cos \theta = \frac{7}{25}$$
, $\tan \theta = \frac{24}{7}$, $\csc \theta = \frac{25}{24}$, $\sec \theta = \frac{25}{7}$, $\cot \theta = \frac{7}{24}$
11. $\sin \phi = \frac{2\sqrt{5}}{5}$, $\cos \phi = \frac{\sqrt{5}}{5}$, $\csc \phi = \frac{\sqrt{5}}{2}$, $\sec \phi = \sqrt{5}$,

11.
$$\sin \phi = \frac{2\sqrt{5}}{5}$$
, $\cos \phi = \frac{\sqrt{5}}{5}$, $\csc \phi = \frac{\sqrt{5}}{2}$, $\sec \phi = \sqrt{5}$,

$$\cot \phi = \frac{1}{2}$$

13.
$$\sin \theta = \frac{2}{3}$$
, $\cos \theta = \frac{\sqrt{5}}{3}$, $\tan \theta = \frac{2\sqrt{5}}{5}$, $\sec \theta = \frac{3\sqrt{5}}{5}$,

$$\cot \theta = \frac{\sqrt{5}}{2}$$

15.
$$\sin \beta = \frac{2\sqrt{5}}{5}$$
, $\tan \beta = 2$, $\csc \beta = \frac{\sqrt{5}}{2}$, $\sec \beta = \sqrt{5}$,

$$\cot \beta = \frac{1}{2}$$

17.
$$\frac{\sqrt{2}}{2}$$
 19. 2 21. $\frac{\sqrt{3}}{3}$ 23. $\frac{1}{2}$ 25. 1 27. 2