19-April-2015
Algebra and Trigonometry in-class worksheet TO BE HANDED IN AND GRADED! Chapter 5.1: Trigonometric Functions of Acute Angles

Name: \qquad

Date:

\qquad
Here's what you absolutely have to know for the next 4 weeks:

$$
\begin{aligned}
& \sin \theta=\frac{\text { side opposite } \theta}{\text { hypotenuse }}, \\
& \cos \theta=\frac{\text { side adjacent to } \theta}{\text { hypotenuse }}, \\
& \tan \theta=\frac{\text { side opposite } \theta}{\text { side adjacent to } \theta},
\end{aligned}
$$

Exercise:

Find the ratio for each function evaluated for each angle: $\quad \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}=$

$\cos \theta=\frac{\text { adj }}{\text { hyp }}=$
$\tan \theta=\frac{\text { opp }}{\text { adj }}=$
$\sin \alpha=\frac{\text { opp }}{\text { hyp }}=$
$\cos \alpha=\frac{\text { adj }}{\text { hyp }}=$
$\tan \alpha=\frac{\text { opp }}{\text { adj }}=$

Calculator exercises:

1) verify these lengths satisfy The Pythagoras' Theorem:
2) Find the the actual value (in degrees) for each of the two angles:

Here's an incredibly helpful (and possibly culturally insensitive) mnemonic:

"Chief SOH CAH TOA"

Exercise:

Without peeking back, write out the definitions of Sine, Cosine, and Tangent using this mnemonic

Find the Sine, Cosine, and Tangent for every one of the specified angles:

1

3.

5.

6.

Some additional facts you'll need to know how to use, but you do not have memorize for this class

Reciprocal Functions

$$
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta}
$$

Do the odd-numbered problems
Given a function value of an acute angle, find the other five trigonometric function values.
9. $\sin \theta=\frac{24}{25}$
10. $\cos \sigma=0.7$
11. $\tan \phi=2$
12. $\cot \theta=\frac{1}{3}$
13. $\csc \theta=1.5$
14. $\sec \beta=\sqrt{17}$
15. $\cos \beta=\frac{\sqrt{5}}{5}$
16. $\sin \sigma=\frac{10}{11}$

Do these two problems:

29. Distance Across a River. Find the distance a across the river.

30. Distance Between Bases. A baseball diamond is actually a square 90 ft on a side. If a line is drawn from third base to first base, then a right triangle
$Q P H$ is formed, where $\angle Q P H$ is 45°. Using a trigonometric function, find the distance from third base to first base.

Here's some special angles that are extremely common on exams: 30, 45, and 60 degrees

$$
\begin{aligned}
& \sin 45^{\circ}=\frac{\text { opp }}{\text { hyp }}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \approx 0.7071 \\
& \cos 45^{\circ}=\frac{\text { adj }}{\text { hyp }}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \approx 0.7071 \\
& \tan 45^{\circ}=\frac{\text { opp }}{\text { adj }}=\frac{1}{1}=1
\end{aligned}
$$

$$
\begin{aligned}
a^{2}+1^{2} & =2^{2} \\
a^{2}+1 & =4 \\
a^{2} & =3 \\
a & =\sqrt{3} .
\end{aligned}
$$

We can now determine the function values of 30° and 60° :

$$
\begin{array}{ll}
\sin 30^{\circ}=\frac{1}{2}=0.5, & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \approx 0.8660, \\
\cos 30^{\circ}=\frac{\sqrt{3}}{2} \approx 0.8660, & \cos 60^{\circ}=\frac{1}{2}=0.5, \\
\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \approx 0.5774, & \tan 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3} \approx 1.7321 .
\end{array}
$$

Solve the odd problems without a calculator. It helps to draw a triangle for each problem Find the exact function value.

17. $\cos 45^{\circ}$	18. $\tan 30^{\circ}$
19. $\sec 60^{\circ}$	20. $\sin 45^{\circ}$
21. $\cot 60^{\circ}$	22. $\csc 45^{\circ}$
23. $\sin 30^{\circ}$	24. $\cos 60^{\circ}$
25. $\tan 45^{\circ}$	26. $\sec 30^{\circ}$
27. $\csc 30^{\circ}$	28. $\cot 60^{\circ}$

Exercise Set 5.1

1. $\sin \phi=\frac{15}{17}, \cos \phi=\frac{8}{17}, \tan \phi=\frac{15}{8}, \csc \phi=\frac{17}{15}, \sec \phi=\frac{17}{8}$, $\cot \phi=\frac{8}{15}$
2. $\sin \alpha=\frac{\sqrt{3}}{2}, \cos \alpha=\frac{1}{2}, \tan \alpha=\sqrt{3}, \csc \alpha=\frac{2 \sqrt{3}}{3}$,
$\sec \alpha=2, \cot \alpha=\frac{\sqrt{3}}{3}$
3. $\sin \phi=\frac{7 \sqrt{65}}{65}, \cos \phi=\frac{4 \sqrt{65}}{65}, \tan \phi=\frac{7}{4}$,
$\csc \phi=\frac{\sqrt{65}}{7}, \sec \phi=\frac{\sqrt{65}}{4}, \cot \phi=\frac{4}{7}$
4. $\csc \alpha=\frac{3}{\sqrt{5}}$, or $\frac{3 \sqrt{5}}{5} ; \sec \alpha=\frac{3}{2} ; \cot \alpha=\frac{2}{\sqrt{5}}$, or $\frac{2 \sqrt{5}}{5}$
5. $\cos \theta=\frac{7}{25}, \tan \theta=\frac{24}{7}, \csc \theta=\frac{25}{24}, \sec \theta=\frac{25}{7}, \cot \theta=\frac{7}{24}$
6. $\sin \phi=\frac{2 \sqrt{5}}{5}, \cos \phi=\frac{\sqrt{5}}{5}, \csc \phi=\frac{\sqrt{5}}{2}, \sec \phi=\sqrt{5}$, $\cot \phi=\frac{1}{2}$
7. $\sin \theta=\frac{2}{3}, \cos \theta=\frac{\sqrt{5}}{3}, \tan \theta=\frac{2 \sqrt{5}}{5}, \sec \theta=\frac{3 \sqrt{5}}{5}$,
$\cot \theta=\frac{\sqrt{5}}{2}$
8. $\sin \beta=\frac{2 \sqrt{5}}{5}, \tan \beta=2, \csc \beta=\frac{\sqrt{5}}{2}, \sec \beta=\sqrt{5}$, $\cot \beta=\frac{1}{2}$
9. $\frac{\sqrt{2}}{2}$
10. 2
11. $\frac{\sqrt{3}}{3}$
12. $\frac{1}{2}$
13. 1 27. 2
14. 62.4 m
15. 9.72°
16. 35.01°
17. 3.03°
18. 49.65°
19. 0.25°
20. 5.01°
21. $17^{\circ} 36^{\prime}$
22. $83^{\circ} 1^{\prime} 30^{\prime \prime}$
23. $11^{\circ} 45^{\prime}$
24. $47^{\circ} 49^{\prime} 36^{\prime \prime}$
25. 54^{\prime}
26. $39^{\circ} 27^{\prime}$
27. 0.6293
28. 0.0737
29. 1.2765
30. 0.7621
31. 0.9336
32. 12.4288
33. 1.0000
34. 1.7032
35. 30.8°
36. 12.5°
37. 64.4°
38. 46.5°
39. 25.2°
40. 38.6°
41. 45°
42. 60°
43. 45°
44. 60°
45. 30°
