Algebra in-class worksheet TO BE HANDED IN AND GRADED! Chapter 4.4 \& 4.5: Properties of Logarithmic functions; Solving equations

Name: \qquad
Date: \qquad

Factoids to be used in solving problems:

The Product Rule

For any positive numbers M and N and any logarithmic base a,

$$
\log _{a} M N=\log _{a} M+\log _{a} N .
$$

(The logarithm of a product is the sum of the logarithms of the factors.)

The Power Rule

For any positive number M, any logarithmic base a, and any real number p,

$$
\log _{a} M^{p}=p \log _{a} M
$$

(The logarithm of a power of M is the exponent times the logarithm of M.)

The Quotient Rule

For any positive numbers M and N, and any logarithmic base a,

$$
\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N
$$

(The logarithm of a quotient is the logarithm of the numerator minus the logarithm of the denominator.)

The Logarithm of a Base to a Power

For any base a and any real number x,

$$
\log _{a} a^{x}=x .
$$

(The logarithm, base a, of a to a power is the power.)

A Base to a Logarithmic Power

For any base a and any positive real number x,

$$
a^{\log _{a} x}=x
$$

(The number a raised to the power $\log _{a} x$ is x.)

Common Errors

$\log _{a} M N \neq\left(\log _{a} M\right)\left(\log _{a} N\right)$
$\log _{a}(M+N) \neq \log _{a} M+\log _{a} N$
$\log _{a} \frac{M}{N} \neq \frac{\log _{a} M}{\log _{a} N}$
$\left(\log _{a} M\right)^{p} \neq p \log _{a} M$

The logarithm of a product is not the product of the logarithms. The logarithm of a sum is not the sum of the logarithms.

The logarithm of a quotient is not the quotient of the logarithms.
The power of a logarithm is not the exponent times the logarithm.

Summary of the Properties of Logarithms

The Product Rule:
The Power Rule:
The Quotient Rule:
The Change-of-Base Formula: $\quad \log _{b} M=\frac{\log _{a} M}{\log _{a} b}$
Other Properties:

$$
\begin{array}{ll}
\log _{a} a=1, & \log _{a} 1=0, \\
\log _{a} a^{x}=x, & a^{\log _{a} x}=x
\end{array}
$$

Do odd \# problems

Express as a sum of logarithms.

1. $\log _{3}(81 \cdot 27)$	2. $\log _{2}(8 \cdot 64)$
3. $\log _{5}(5 \cdot 125)$	4. $\log _{4}(64 \cdot 32)$
5. $\log _{8} 8 Y$	6. $\log _{0.2 x}$
7. $\ln x y$	8. $\ln a b$

Express as a product.

9. $\log _{b} t^{3}$	10. $\log _{a} x^{4}$
11. $\log y^{8}$	12. $\ln y^{5}$
13. $\log _{c} K^{-6}$	14. $\log _{b} Q^{-8}$
15. $\ln \sqrt[3]{4}$	$16 \cdot \ln \sqrt{a}$

Express as a difference of logarithms.

17. $\log _{t} \frac{M}{8}$	18. $\log _{a} \frac{76}{13}$
19. $\log \frac{x}{y}$	$20 . \ln \frac{a}{b}$
21. $\ln \frac{r}{s}$	22. $\log _{b} \frac{3}{w}$

Express in terms of sums and differences of logarithms.
23. $\log _{a} 6 x y^{5} z^{4}$
24. $\log _{a} x^{3} y^{2} z$
25. $\log _{b} \frac{p^{2} q^{5}}{m^{4} b^{9}}$
26. $\log _{b} \frac{x^{2} y}{b^{3}}$
27. $\ln \frac{2}{3 x^{3} y}$
28. $\log \frac{5 a}{4 b^{2}}$
29. $\log \sqrt{r^{3} t}$
30. $\ln \sqrt[3]{5 x^{5}}$
31. $\log _{a} \sqrt{\frac{x^{6}}{p^{5} q^{8}}}$
32. $\log _{c} \sqrt[3]{\frac{y^{3} z^{2}}{x^{4}}}$
33. $\log _{a} \sqrt[4]{\frac{m^{8} n^{12}}{a^{3} b^{5}}}$
34. $\log _{a} \sqrt{\frac{a^{6} b^{8}}{a^{2} b^{5}}}$

Express as a single logarithm and, if possible, simplify.

35. $\log _{a} 75+\log _{a} 2$ 36. $\log 0.01+\log 1000$ 37. $\log 10,000-\log 100$ 38. $\ln 54-\ln 6$	
39. $\frac{1}{2} \log n+3 \log m$ 40. $\frac{1}{2} \log a-\log 2$ 41. $\frac{1}{2} \log _{a} x+4 \log _{a} y-3 \log _{a} x$	
42. $\frac{2}{5} \log _{a} x-\frac{1}{3} \log _{a} y$	
43. $\ln x^{2}-2 \ln \sqrt{x}$	
44. $\ln 2 x+3(\ln x-\ln y)$	
45. $\ln \left(x^{2}-4\right)-\ln (x+2)$	
46. $\log \left(x^{3}-8\right)-\log (x-2)$	
47. $\log \left(x^{2}-5 x-14\right)-\log \left(x^{2}-4\right)$	
48. $\log g_{a} \frac{a}{\sqrt{x}}-\log _{a} \sqrt{a x}$	
49. $\ln x-3[\ln (x-5)+\ln (x+5)]$	
50. $\frac{2}{3}\left[\ln \left(x^{2}-9\right)-\ln (x+3)\right]+\ln (x+y)$	
51. $\frac{3}{2} \ln 4 x^{6}-\frac{4}{5} \ln 2 y^{10}$	
52. $120\left(\ln \sqrt[5]{x^{3}}+\ln \sqrt[3]{y^{2}}-\ln \sqrt[4]{16 z^{5}}\right)$	

4.5

Exercise Set

Solve the exponential equation algebraically. Then check using a graphing calculator.

1. $3^{x}=81$	$2.2^{x}=32$
3. $2^{2 x}=8$	4. $3^{7 x}=27$
5. $2^{x}=33$	$6 \cdot 2^{x}=40$
7. $5^{4 x-7}=125$	$8 \cdot 4^{3 x-5}=16$
9. $27=3^{5 x} \cdot 9^{x^{2}}$	$10 \cdot 3^{x^{2}+4 x}=\frac{1}{27}$
11. $84^{x}=70$	12. $28^{x}=10^{-3 x}$
13. $e^{-c}=5^{2 c}$	14. $15^{x}=30$
15. $e^{t}=1000$	16. $e^{-t}=0.04$
17. $e^{-0.03 t}=0.08$	18. $1000 e^{0.09 t}=5000$
19. $3^{x}=2^{x-1}$	20. $5^{x+2}=4^{1-x}$
21. $(3.9)^{x}=48$	22. $250-(1.87)^{x}=0$
23. $e^{x}+e^{-x}=5$	24. $e^{x}-6 e^{-x}=1$
25. $\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=3$	26. $\frac{5^{x}-5^{-x}}{5^{x}+5^{-x}}=8$

Solve the logarithmic equation algebraically. Then check using a graphing calculator.
27. $\log _{5} x=4$
28. $\log _{2} x=-3$
29. $\log x=-4$
30. $\log x=1$
31. $\ln x=1$
32. $\ln x=-2$
33. $\log _{2}(10+3 x)=5$
34. $\log _{5}(8-7 x)=3$
35. $\log x+\log (x-9)=1$
36. $\log _{2}(x+1)+\log _{2}(x-1)=3$
37. $\log _{2}(x+20)-\log _{2}(x+2)=\log _{2} x$
38. $\log (x+5)-\log (x-3)=\log 2$
39. $\log _{8}(x+1)-\log _{8} x=2$
40. $\log x-\log (x+3)=-1$
41. $\log x+\log (x+4)=\log 12$
42. $\ln x-\ln (x-4)=\ln 3$
43. $\log _{4}(x+3)+\log _{4}(x-3)=2$

Exercise Set 4.4

1. $\log _{3} 81+\log _{3} 27$ 3. $\log 5+\log 5125$
2. $\log _{t} 8+\log _{t} Y \quad$ 7. $\ln x+\ln y \quad$ 9. $3 \log _{b} t$
3. $8 \log y$ 13. $-6 \log _{c} K \quad$ 15. $\frac{1}{3} \ln 4$
4. $\log _{\mathrm{r}} M-\log _{\mathrm{r}} 8 \quad$ 19. $\log x-\log y$
5. $\ln r-\ln s$
6. $\log _{a} 6+\log _{a} x+5 \log _{a} y+4 \log _{a} z$
7. $2 \log _{b} p+5 \log _{b} q-4 \log _{b} m-9$
8. $\ln 2-\ln 3-3 \ln x-\ln y$
9. $\frac{3}{2} \log r+\frac{1}{2} \log t \quad$ 31. $3 \log _{a} x-\frac{5}{2} \log _{a} p-4 \log _{a} q$
10. $2 \log _{a} m+3 \log _{a} n-\frac{3}{4}-\frac{5}{4} \log _{a} b \quad$ 35. $\log _{a} 150$
11. $\log 100=2$
12. $\log m^{3} \sqrt{n}$
13. $\log _{a} x^{-5 / 2} y^{4}$, or $\log _{a} \frac{y^{4}}{x^{5 / 2}}$
14. $\ln x$
15. $\ln (x-2)$
16. $\log \frac{x-7}{x-2}$
17. $\ln \frac{x}{\left(x^{2}-25\right)^{3}}$
18. $\ln \frac{2^{11 / 5} x^{9}}{y^{8}}$
19. -0.74
20. 1.991
21. 0.356
22. 4.827
23. -1.792
24. 0.099
25. 3
26. $|x-4| \quad$ 69. $4 x$
27. w
28. $8 t \quad$ 75. $\frac{1}{2}$
29. Discussion and Writing
30. [3.1] Quartic 80. [4.2] Exponential
31. [1.4] Linear (constant) 82. [4.2] Exponential
32. [3.5] Rational
33. [4.3] Logarithmic
34. [3.1] Cubic 86. [3.5] Rational 87. [1.4] Linear
35. [2.4] Quadratic 89. 4 91. $\log _{a}\left(x^{3}-y^{3}\right)$
36. $\frac{1}{2} \log _{a}(x-y)-\frac{1}{2} \log _{a}(x+y) \quad 95.7 \quad$ 97. True
37. True 101. True 103. -2 105. 3
38. $e^{-x y}=\frac{a}{b}$
39. $\log _{a}\left(\frac{x+\sqrt{x^{2}-5}}{5} \cdot \frac{x-\sqrt{x^{2}-5}}{x-\sqrt{x^{2}-5}}\right)$

$$
\begin{aligned}
& =\log _{a} \frac{5}{5\left(x-\sqrt{x^{2}-5}\right)} \\
& =-\log _{a}\left(x-\sqrt{x^{2}-5}\right)
\end{aligned}
$$

Exercise Set 4.5

$\begin{array}{llllll}\text { 1. } 4 & \text { 3. } \frac{3}{2} & \text { 5. } 5.044 & \text { 7. } \frac{5}{2} & \text { 9. }-3, \frac{1}{2} & \text { 11. } 0.959\end{array}$
$\begin{array}{lllll}\text { 13. } 0 & \text { 15. } 6.908 & \text { 17. } 84.191 & \text { 19. }-1.710 & \text { 21. } 2.844\end{array}$
23. $-1.567,1.567$
25. 0.347
27. 625
29. 0.0001
31. $e \quad$ 33. $\frac{22}{3}$
35. 10
37. 4
39. $\frac{1}{63}$
41. 2
43. $5 \quad$ 45. $\frac{21}{8}$
47. $\frac{8}{7}$
49. 0.367
51. 0.621
53. -1.532
55. 7.062
57. 2.444
59. (4.093, 0.786)

