Algebra in-class worksheet TO BE HANDED IN AND GRADED! Chapter 4.4 & 4.5: Properties of Logarithmic functions; Solving equations

Name:			
Date:			

Factoids to be used in solving problems:

The Product Rule

For any positive numbers M and N and any logarithmic base a,

$$\log_a MN = \log_a M + \log_a N.$$

(The logarithm of a product is the sum of the logarithms of the factors.)

The Power Rule

For any positive number M, any logarithmic base a, and any real number p,

$$\log_a M^p = p \log_a M$$
.

(The logarithm of a power of M is the exponent times the logarithm of M.)

The Quotient Rule

For any positive numbers M and N, and any logarithmic base a,

$$\log_a \frac{M}{N} = \log_a M - \log_a N.$$

(The logarithm of a quotient is the logarithm of the numerator minus the logarithm of the denominator.)

The Logarithm of a Base to a Power

For any base a and any real number x,

$$\log_a a^x = x$$
.

(The logarithm, base a, of a to a power is the power.)

A Base to a Logarithmic Power

For any base a and any positive real number x,

$$a^{\log_a x} = x$$

(The number a raised to the power $\log_a x$ is x.)

Common Errors

 $\log_a MN \neq (\log_a M)(\log_a N)$ $\log_a (M+N) \neq \log_a M + \log_a N$

The logarithm of a product is *not* the product of the logarithms. The logarithm of a sum is *not* the sum of the logarithms.

$$\log_a \frac{M}{N} \neq \frac{\log_a M}{\log_a N}$$

The logarithm of a quotient is not the quotient of the logarithms.

 $(\log_a M)^p \neq p \log_a M$

The power of a logarithm is not the exponent times the logarithm.

Summary of the Properties of Logarithms

The Product Rule: $\log_a MN = \log_a M + \log_a N$

The Power Rule: $\log_a M^p = p \log_a M$

The Quotient Rule: $\log_a \frac{M}{N} = \log_a M - \log_a N$

The Change-of-Base Formula: $\log_b M = \frac{\log_a M}{\log_a b}$

Other Properties: $\log_a a = 1$, $\log_a 1 = 0$,

 $\log_a a^x = x, \qquad a^{\log_a x} = x$

Do odd # problems

Express as a sum of logarithms.

5.
$$\log_t 8Y$$
 6. $\log 0.2x$

Express as a product.

-	
$\log_b t^3$	10. $\log_a x^4$

13.
$$\log_c K^{-6}$$

14.
$$\log_b Q^{-8}$$

15.
$$\ln \sqrt[3]{4}$$

Express as a difference of logarithms.

17.
$$\log_t \frac{M}{8}$$

18.
$$\log_a \frac{76}{13}$$

19.
$$\log \frac{x}{y}$$

20.
$$\ln \frac{a}{b}$$

21.
$$\ln \frac{r}{s}$$

22.
$$\log_b \frac{3}{w}$$

Express in terms of sums and differences of logarithms.

23.
$$\log_a 6xy^5z^4$$

24.
$$\log_a x^3 y^2 z$$

25.
$$\log_b \frac{p^2 q^5}{m^4 b^9}$$

26.
$$\log_b \frac{x^2 y}{h^3}$$

27.
$$\ln \frac{2}{3x^3y}$$

$$28.\log\frac{5a}{4b^2}$$

29.
$$\log \sqrt{r^3 t}$$

30.
$$\ln \sqrt[3]{5x^5}$$

31.
$$\log_a \sqrt{\frac{x^6}{p^5 q^8}}$$

32.
$$\log_c \sqrt[3]{\frac{y^3 z^2}{x^4}}$$

33.
$$\log_a \sqrt[4]{\frac{m^8 n^{12}}{a^3 b^5}}$$

34.
$$\log_a \sqrt{\frac{a^6b^8}{a^2b^5}}$$

Express as a single logarithm and, if possible, simplify.

35.
$$\log_a 75 + \log_a 2$$

37.
$$\log 10,000 - \log 100$$

$$39.\frac{1}{2}\log n + 3\log m$$

40.
$$\frac{1}{2} \log a - \log 2$$

$$41.\frac{1}{2}\log_a x + 4\log_a y - 3\log_a x$$

$$42.\tfrac{2}{5}\log_a x - \tfrac{1}{3}\log_a y$$

43.
$$\ln x^2 - 2 \ln \sqrt{x}$$

44.
$$\ln 2x + 3(\ln x - \ln y)$$

45.
$$\ln(x^2-4) - \ln(x+2)$$

46.
$$\log(x^3 - 8) - \log(x - 2)$$

47.
$$\log(x^2 - 5x - 14) - \log(x^2 - 4)$$

48.
$$\log_a \frac{a}{\sqrt{x}} - \log_a \sqrt{ax}$$

49.
$$\ln x - 3[\ln(x-5) + \ln(x+5)]$$

50.
$$\frac{2}{3}[\ln(x^2-9)-\ln(x+3)]+\ln(x+y)$$

$$51.\frac{3}{2} \ln 4x^6 - \frac{4}{5} \ln 2y^{10}$$

52.
$$120 \left(\ln \sqrt[5]{x^3} + \ln \sqrt[3]{y^2} - \ln \sqrt[4]{16z^5} \right)$$

4.5

Exercise Set

Solve the exponential equation algebraically. Then check using a graphing calculator.

1.
$$3^x = 81$$

$$3.2^{2x} = 8$$

$$5.2^x = 33$$

7.
$$5^{4x-7} = 125$$

$$9.27 = 3^{5x} \cdot 9^{x^2}$$

11.
$$84^x = 70$$

13.
$$e^{-c} = 5^{2c}$$

15.
$$e^t = 1000$$

17.
$$e^{-0.03t} = 0.08$$

19.
$$3^x = 2^{x-1}$$

$$21.(3.9)^x = 48$$

23.
$$e^x + e^{-x} = 5$$

$$25. \frac{e^x + e^{-x}}{e^x - e^{-x}} = 3$$

$$2.2^x = 32$$

4.
$$3^{7x} = 27$$

6.
$$2^x = 40$$

$$8.4^{3x-5} = 16$$

10.
$$3^{x^2+4x} = \frac{1}{27}$$

12.
$$28^x = 10^{-3x}$$

14.
$$15^x = 30$$

16.
$$e^{-t} = 0.04$$

18.
$$1000e^{0.09t} = 5000$$

20.
$$5^{x+2} = 4^{1-x}$$

22.
$$250 - (1.87)^x = 0$$

24.
$$e^x - 6e^{-x} = 1$$

$$26. \frac{5^x - 5^{-x}}{5^x + 5^{-x}} = 8$$

Solve the logarithmic equation algebraically. Then check using a graphing calculator.

27.
$$\log_5 x = 4$$

28.
$$\log_2 x = -3$$

29.
$$\log x = -4$$

30.
$$\log x = 1$$

31.
$$\ln x = 1$$

32.
$$\ln x = -2$$

$$33.\log_2(10 + 3x) = 5$$

34.
$$\log_5(8-7x)=3$$

35.
$$\log x + \log(x - 9) = 1$$

36.
$$\log_2(x+1) + \log_2(x-1) = 3$$

37.
$$\log_2(x+20) - \log_2(x+2) = \log_2 x$$

38.
$$\log(x+5) - \log(x-3) = \log 2$$

39.
$$\log_8(x+1) - \log_8 x = 2$$

40.
$$\log x - \log(x + 3) = -1$$

41.
$$\log x + \log(x + 4) = \log 12$$

42.
$$\ln x - \ln (x - 4) = \ln 3$$

43.
$$\log_4(x+3) + \log_4(x-3) = 2$$

Exercise Set 4.4

5.
$$\log_{\rm f} 8 + \log_{\rm f} Y$$
 7. $\ln x + \ln y$ 9. $3 \log_{\rm b} t$

11.
$$8 \log y$$
 13. $-6 \log_c K$ 15. $\frac{1}{3} \ln 4$

17.
$$\log_t M - \log_t 8$$
 19. $\log x - \log y$ 21. $\ln r - \ln s$

23.
$$\log_a 6 + \log_a x + 5 \log_a y + 4 \log_a z$$

25.
$$2 \log_b p + 5 \log_b q - 4 \log_b m - 9$$

27.
$$\ln 2 - \ln 3 - 3 \ln x - \ln y$$

29.
$$\frac{3}{2} \log r + \frac{1}{2} \log t$$
 31. $3 \log_a x - \frac{5}{2} \log_a p - 4 \log_a q$

33.
$$2 \log_a m + 3 \log_a n - \frac{3}{4} - \frac{5}{4} \log_a b$$
 35. $\log_a 150$

37.
$$\log 100 = 2$$
 39. $\log m^3 \sqrt{n}$

41.
$$\log_a x^{-5/2} y^4$$
, or $\log_a \frac{y^4}{x^{5/2}}$ 43. $\ln x$ 45. $\ln (x-2)$

47.
$$\log \frac{x-7}{x-2}$$
 49. $\ln \frac{x}{(x^2-25)^3}$ 51. $\ln \frac{2^{11/5}x^9}{y^8}$

88. [2.4] Quadratic 89. 4 91.
$$\log_a(x^3 - y^3)$$

88. [2.4] Quadratic 89. 4 91.
$$\log_a(x^3 - y^3)$$
 93. $\frac{1}{2}\log_a(x-y) - \frac{1}{2}\log_a(x+y)$ 95. 7 97. True

107.
$$e^{-xy} = \frac{a}{b}$$

109.
$$\log_a \left(\frac{x + \sqrt{x^2 - 5}}{5} \cdot \frac{x - \sqrt{x^2 - 5}}{x - \sqrt{x^2 - 5}} \right)$$

= $\log_a \frac{5}{5(x - \sqrt{x^2 - 5})}$
= $-\log_a (x - \sqrt{x^2 - 5})$

Exercise Set 4.5

1. 4 3.
$$\frac{3}{2}$$
 5. 5.044 7. $\frac{5}{2}$ 9. $-3, \frac{1}{2}$ 11. 0.959

31. e 33.
$$\frac{22}{3}$$
 35. 10 37. 4 39. $\frac{1}{63}$ 41. 2

43. 5 45.
$$\frac{21}{8}$$
 47. $\frac{8}{7}$ 49. 0.367 51. 0.621