Algebra in-class worksheet TO BE HANDED IN AND GRADED! Chapter 4.1 \& 4.2: Exponential and Logarithmic functions

Name:
Date: \qquad

Copy down word-for-word the text's definition of an Exponential Function (pp 361)

Compare and contrast: $\quad y_{1}=f_{1}(x)=2^{x}$ versus $y_{2}=f_{2}(x)=x^{2}$
Evaluate these two functions at each value of x and plot on the same graph

\mathbf{x}	f1(x)	f2(x)															
-3																	
-2																	
-1																	
0																	
1																	
2																	
2																	
3																	

As x gets larger than 3, which function becomes larger? (evaluate at $x=4, x=10, x=20$)

The number e :

$$
e=2.7182818284 \ldots
$$

e is an irrational number that occurs in natural phenomena.
e has comparable social-scientific significance to the number π
(For instance, if the February had at least 71 days, I'm sure people would celebrate " e day" and have contests to see who could spout off from memory the most digits at 8:28 in the morning.)

Calculator exercises: (check your work against the answers on page 368
EXAMPLE 5 Find each value of e^{x}, to four decimal places, using the e^{x} key on a calculator.
a) e^{3}
b) $e^{-0.23}$
c) e^{0}
d) e^{1}

Textbook problems on exponential functions:

In Exercises 5-10, match the function with one of the graphs (a) $-(f)$, which follow.
5. $f(x)=-2^{x}-1$
6. $f(x)=-\left(\frac{1}{2}\right)^{x}$
7. $f(x)=e^{x}+3$
8. $f(x)=e^{x+1}$
9. $f(x)=3^{-x}-2$
10. $f(x)=1-e^{x}$
a)

b)

c)

d)

f)

Recyding Aluminum Cans. It is estimated that two thirds of all aluminum cans distributed will be recycled each year (Source: Alcoa Corporation). A beverage company distributes 350,000 cans. The number still in use after time t, in years, is given by the exponential function

$$
N(t)=350,000\left(\frac{2}{3}\right)^{t} .
$$

a) How many cans are still in use after 0 yr ? 1 yr ? 4 yr ? 10 yr ?
b) Graph the function.
c) After how long will 100,000 cans still be in use?

61. Salvage Value. A top-quality phone-fax copying machine is purchased for $\$ 1800$. Its value each year is about 80% of the value of the preceding year. After t years, its value, in dollars, is given by the exponential function

$$
V(t)=1800(0.8)^{t}
$$

a) Graph the function.
b) Find the value of the machine after $0 \mathrm{yr}, 1 \mathrm{yr}, 2 \mathrm{yr}$, 5 yr , and 10 yr.
c) The company decides to replace the machine when its value has declined to $\$ 500$. After how long will the machine be replaced?

Logarithmic Function, Base a

We define $y=\log _{a} x$ as that number y such that $x=a^{y}$, where $x>0$ and a is a positive constant other than 1 .

Let's look at the graphs of $f(x)=a^{x}$ and $f^{-1}(x)=\log _{a} x$ for $a>1$ and $0<a<1$.

$0<a<1$

Note that the graphs of $f(x)$ and $f^{-1}(x)$ are reflections of each other across the line $y=x$.

Logarithmic Function, Base 2

${ }^{\text {" }} \log _{2} x$," read "the logarithm, base 2 , of x," means
"the power to which we raise 2 to get x."

$$
\begin{aligned}
& \log x \text { means } \log _{10} x . \\
& \ln x \text { means } \log _{e} x .
\end{aligned}
$$

Quick exercises (check your work against examples on page 378)
EXAMPLE 3 Convert each of the following to a logarithmic equation.
a) $16=2^{x}$
b) $10^{-3}=0.001$
c) $e^{t}=70$

Additional Facts about Logarithms:

$$
\log _{a} 1=0 \text { and } \log _{a} a=1, \text { for any logarithmic base } a .
$$

The Change-of-Base Formula

For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} .
$$

We will prove this result in the next section.
] EXAMPLE 7 Find $\log _{5} 8$ using common logarithms.
Solution First, we let $a=10, b=5$, and $M=8$. Then we substitute into the change-of-base formula:

$$
\begin{aligned}
& \hline \downarrow \\
& \log _{5} 8=\frac{\log _{10} 8}{\log _{10} 5} \quad \text { Substituting } \\
& \approx 1.2920 . \quad \text { Using a calculator }
\end{aligned}
$$

Since $\log _{5} 8$ is the power to which we raise 5 to get 8 , we would expect this power to be greater than $1\left(5^{1}=5\right)$ and less than $2\left(5^{2}=25\right)$, so the result is reasonable. The check is shown in the window at left.

Do each of these odd-numbered problems. Expect to be quizzed on the even-numbered problems
Find each of the following. Do not use a calculator.

9. $\log _{2} 16$	10. $\log _{3} 9$
11. $\log _{5} 125$	12. $\log _{2} 64$
13. $\log _{5} 0.001$	14. $\log _{100}$
15. $\log _{2} \frac{1}{4}$	$16 \cdot \log _{8} 2$
17. $\ln 1$	$18 \cdot \ln e$
19. $\log 10$	20. $\log 1$
21. $\log _{5} 5^{4}$	22. $\log \sqrt{10}$
23. $\log _{3} \sqrt[4]{3}$	$24 \cdot \log _{10^{8 / 5}}$
25. $\log _{10^{-7}}$	$26 \cdot \log _{5} 1$
27. $\log _{49} 7$	28. $\log _{3} 3^{-2}$
29. $\ln e^{3 / 4}$	30. $\log _{2} \sqrt{2}$
31. $\log _{4} 1$	32. $\ln ^{-5}$
33. $\ln \sqrt{e}$	34. $\log _{64} 4$

Find the logarithm using common logarithms and the change-of-base formula.

69. $\log _{4} 100$	70. $\log _{3} 20$
71. $\log _{100} 0.3$	72. $\log _{\pi} 100$
73. $\log _{200} 50$	74. $\log _{53} 1700$

94. pH of Substances in Chemistry. In chemistry, the pH of a substance is defined as

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

where H^{+}is the hydrogen ion concentration, in moles per liter. Find the pH of each substance.

Litmus paper is used to test pH .

Hydrogen Ion
SUBSTANCE CONCENTRATION
a) Pineapple juice
1.6×10^{-4}
b) Hair rinse
0.0013
c) Mouthwash
6.3×10^{-7}
d) Eggs
1.6×10^{-8}
e) Tomatoes
6.3×10^{-5}
95. Find the hydrogen ion concentration of each substance, given the pH (see Exercise 94). Express the answer in scientific notation.

SUBSTANCE	PH
a) Tap water	7
b) Rainwater	5.4
c) Orange juice	3.2
d) Wine	4.8

