Algebra in-class worksheet TO BE HANDED IN AND GRADED! Chapter 4.1 & 4.2: Exponential and Logarithmic functions

Name:_____ Date: _____

Copy down word-for-word the text's definition of an *Exponential Function* (pp 361)

Compare and contrast: $y_1 = f_1(x) = 2^x$ versus $y_2 = f_2(x) = x^2$ Evaluate these two functions at each value of x and plot on the same graph

As x gets larger than 3, which function becomes larger? (evaluate at x=4, x=10, x=20)

The number *e*:

e = 2.7182818284...

e is an irrational number that occurs in natural phenomena.

e has comparable social-scientific significance to the number π

(For instance, if the February had at least 71 days, I'm sure people would celebrate "*e* day" and have contests to see who could spout off from memory the most digits at 8:28 in the morning.)

Calculator exercises: (check your work against the answers on page 368

EXAMPLE 5 Find each value of e^x , to four decimal places, using the e^x key on a calculator. **a)** e^3 **b)** $e^{-0.23}$ **c)** e^0 **d)** e^1

Textbook problems on exponential functions:

In Exercises 5-10, match the function with one of the graphs (a)-(f), which follow.

Recycling Aluminum Cans. It is estimated that two thirds of all aluminum cans distributed will be recycled each year (*Source*: Alcoa Corporation). A beverage company distributes 350,000 cans. The number still in use after time *t*, in years, is given by the exponential function

$$N(t) = 350,000(\frac{2}{3})^{t}$$
.

- a) How many cans are still in use after 0 yr? 1 yr? 4 yr? 10 yr?
- b) Graph the function.
- c) After how long will 100,000 cans still be in use?

61. Salvage Value. A top-quality phone-fax copying machine is purchased for \$1800. Its value each year is about 80% of the value of the preceding year. After t years, its value, in dollars, is given by the exponential function

$V(t) = 1800(0.8)^t$.

- a) Graph the function.
- b) Find the value of the machine after 0 yr, 1 yr, 2 yr, 5 yr, and 10 yr.
- c) The company decides to replace the machine when its value has declined to \$500. After how long will the machine be replaced?

Logarithmic Function, Base a

We define $y = \log_a x$ as that number y such that $x = a^y$, where x > 0 and a is a positive constant other than 1.

Let's look at the graphs of $f(x) = a^x$ and $f^{-1}(x) = \log_a x$ for a > 1and 0 < a < 1.

Note that the graphs of f(x) and $f^{-1}(x)$ are reflections of each other across the line y = x.

Logarithmic Function, Base 2

"log₂ *x*," read "the logarithm, base 2, of *x*," means "the power to which we raise 2 to get *x*."

> $\log x$ means $\log_{10} x$. $\ln x$ means $\log_e x$.

Quick exercises (check your work against examples on page 378)

EXAMPLE 3 Convert each of the following to a logarithmic equation.

a) $16 = 2^x$ b) $10^{-3} = 0.001$ c) $e^t = 70$

Additional Facts about Logarithms:

 $\log_a 1 = 0$ and $\log_a a = 1$, for any logarithmic base *a*.

The Change-of-Base Formula

For any logarithmic bases a and b, and any positive number M,

 $\log_b M = \frac{\log_a M}{\log_a b}.$

We will prove this result in the next section.

EXAMPLE 7 Find log₅ 8 using common logarithms.

Solution First, we let a = 10, b = 5, and M = 8. Then we substitute into the change-of-base formula:

Since $\log_5 8$ is the power to which we raise 5 to get 8, we would expect this power to be greater than 1 (5¹ = 5) and less than 2 (5² = 25), so the result is reasonable. The check is shown in the window at left.

Do each of these odd-numbered problems. Expect to be quizzed on the even-numbered problems

· · · · · · · · · · · · · · · · · · ·	
9. log ₂ 16	10. log ₃ 9
11. log ₅ 125	12. log ₂ 64
13. log 0.001	14. log 100
15. $\log_2 \frac{1}{4}$	16. log ₈ 2
17. ln 1	18. ln <i>e</i>
19. log 10	20. log 1
21. log ₅ 5 ⁴	22. $\log\sqrt{10}$
23 . log ₃ ∜3	24. log 10 ^{8/5}
25. log 10 ⁻⁷	26. log ₅ 1
27. log ₄₉ 7	28. log ₃ 3 ⁻²
29. ln e ^{3/4}	30. $\log_2 \sqrt{2}$
31. log ₄ 1	32. $\ln e^{-5}$
33. $\ln \sqrt{e}$	34. log ₆₄ 4

Find each of th	e following.	Do not use a	calculator.
-----------------	--------------	--------------	-------------

Find the logarithm using common logarithms and the change-of-base formula.

69. log ₄ 100	70. log ₃ 20
71. log ₁₀₀ 0.3	72. $\log_{\pi} 100$
73. log ₂₀₀ 50	74. log _{5.3} 1700

94. *pH of Substances in Chemistry.* In chemistry, the pH of a substance is defined as

 $pH = -log[H^+],$

where H⁺ is the hydrogen ion concentration, in moles per liter. Find the pH of each substance.

Litmus paper is used to test pH.

	SUBSTANCE	HYDROGEN ION CONCENTRATION
a)	Pineapple juice	1.6×10^{-4}
b)	Hair rinse	0.0013
c)	Mouthwash	6.3×10^{-7}
d)	Eggs	1.6×10^{-8}
e)	Tomatoes	6.3×10^{-5}

95. Find the hydrogen ion concentration of each substance, given the pH (see Exercise 94). Express the answer in scientific notation.

	SUBSTANCE	PН
a)	Tap water	7
b)	Rainwater	5.4
c)	Orange juice	3.2
d)	Wine	4.8