Algebra and in-class worksheet, Chapter 1.4 Equations of Lines and Modeling

Section 1-4 in a nut shell:

The Slope-Intercept Equation

The linear function f given by

$$f(x) = mx + b$$

has a graph that is a straight line parallel to y = mx. The constant m is called the slope, and the y-intercept is (0, b).

Point-Slope Equation

The **point-slope equation** of the line with slope m passing through (x_1, y_1) is

$$y-y_1=m(x-x_1).$$

Parallel Lines

Vertical lines are **parallel**. Nonvertical lines are **parallel** if and only if they have the same slope and different *y*-intercepts.

Perpendicular Lines

Two lines with slopes m_1 and m_2 are **perpendicular** if and only if the product of their slopes is -1:

$$m_1m_2 = -1$$
.

Lines are also **perpendicular** if one is vertical (x = a) and the other is horizontal (y = b).

Find the slope and y-intercept of the equation

1.
$$y = \frac{3}{5}x - 7$$

2.
$$f(x) = -2x + 3$$

3.
$$x = -\frac{2}{5}$$

4.
$$y = \frac{4}{7}$$

5.
$$f(x) = 5 - \frac{1}{2}x$$
 6. $y = 2 + \frac{3}{7}x$

6.
$$y = 2 + \frac{3}{7}x$$

7.
$$3x + 2y = 10$$

8.
$$2x - 3y = 12$$

9.
$$y = -6$$

10.
$$x = 10$$

11.
$$5y - 4x = 8$$

$$12.5x - 2y + 9 = 0$$

Pick off the slope and y-intercept from the graph. Then write as an equation

13.

16.

18.

Graph the equation using the slope and y-intercept. (Shortcut hint: just find the x-intercept and yintercept. Plot those two points. Draw a line between 'em)

19.
$$y = -\frac{1}{2}x - 3$$
 20. $y = \frac{3}{2}x + 1$

20.
$$y = \frac{3}{2}x + 1$$

21.
$$f(x) = 3x - 1$$

21.
$$f(x) = 3x - 1$$
 22. $f(x) = -2x + 5$

23.
$$3x - 4y = 20$$

23.
$$3x - 4y = 20$$
 24. $2x + 3y = 15$

25.
$$x + 3y = 18$$

25.
$$x + 3y = 18$$
 26. $5y - 2x = -20$

Write the *canonical* slope-intercept form of the following lines

27.
$$m = \frac{2}{9}$$
, *y*-intercept (0, 4)

28.
$$m = -\frac{3}{8}$$
, *y*-intercept (0,5)

29.
$$m = -4$$
, *y*-intercept $(0, -7)$

30.
$$m = \frac{2}{7}$$
, *y*-intercept $(0, -6)$

31.
$$m = -4.2$$
, y-intercept $\left(0, \frac{3}{4}\right)$

32.
$$m = -4$$
, *y*-intercept $\left(0, -\frac{3}{2}\right)$

33.
$$m = \frac{2}{9}$$
, passes through (3,7)

34.
$$m = -\frac{3}{8}$$
, passes through (5,6)

35.
$$m = 3$$
, passes through $(1, -2)$

36.
$$m = -2$$
, passes through $(-5, 1)$

37.
$$m = -\frac{3}{5}$$
, passes through $(-4, -1)$

38.
$$m = \frac{2}{3}$$
, passes through $(-4, -5)$

- **39.** Passes through (-1,5) and (2,-4)
- **40.** Passes through (2, -1) and (7, -11)
- **41.** Passes through (7,0) and (-1,4)
- **42.** Passes through (-3,7) and (-1,-5)
- **43.** Passes through (0, -6) and (3, -4)
- **44.** Passes through (-5,0) and $(0,\frac{4}{5})$

Write the slope-intercept equation for a line passing through the given point and perpendicular to the given line. Plot things out.

57. (3,5),
$$y = \frac{2}{7}x + 1$$

58.
$$(-1,6)$$
, $f(x) = 2x + 9$

59.
$$(-7,0)$$
, $y = -0.3x + 4.3$

60.
$$(-4, -5)$$
, $2x + y = -4$

61.
$$(3, -2)$$
, $3x + 4y = 5$

62.
$$(8,-2)$$
, $y = 4.2(x-3) + 1$

63.
$$(3, -3)$$
, $x = -1$

64.
$$(4, -5)$$
, $y = -1$

Exercise Set 1.4

- 1. $\frac{3}{5}$; (0, -7) 3. Slope is not defined; there is no
- y-intercept. 5. $-\frac{1}{2}$; (0,5) 7. $-\frac{3}{2}$; (0,5) 9. 0; (0, -6)
- 11. $\frac{4}{5}$; $\left(0, \frac{8}{5}\right)$ 13. 4; $\left(0, -2\right)$; y = 4x 2
- 15. -1, (0,0); y = -x 17. 0, (0,-3); y = -3

- 29. y = -4x 7
- **35.** y = 3x 5 **37.** $y = -\frac{3}{5}x \frac{17}{5}$
- **39.** y = -3x + 2 **41.** $y = -\frac{1}{2}x + \frac{7}{2}$ 43. $y = \frac{2}{3}x - 6$
- **45.** Horizontal: y = -3; vertical: x = 0
- **47.** Horizontal: y = -1; vertical: $x = \frac{2}{11}$ **49.** Perpendicular **51.** Neither parallel nor perpendicular **53.** Parallel
- 55. Perpendicular 57. $y = \frac{2}{7}x + \frac{29}{7}$; $y = -\frac{7}{2}x + \frac{31}{2}$ 59. y = -0.3x 2.1; $y = \frac{10}{3}x + \frac{70}{3}$
- 61. $y = -\frac{3}{4}x + \frac{1}{4}$; $y = \frac{4}{3}x 6$ 63. x = 3; y = -3 65. True 67. True 69. False 71. No 73. Yes
- 75. (a) Model I, using (0, 7.8) and (20, 6.4):
- y = -0.07x + 7.8; model II, using (10, 7.3) and (32, 4.9): $y = -\frac{6}{55}x + \frac{923}{110}$; (b) model I: about 5.2 days; model II: about
- 4.4 days; (c) model II 77. Using (1, 10,424) and (3, 11,717):