Algebra and in-class worksheet, Chapter 1.4

 Equations of Lines and Modeling
Section 1-4 in a nut shell:

The Slope-Intercept Equation

The linear function f given by

$$
f(x)=m x+b
$$

has a graph that is a straight line parallel to $y=m x$. The constant m is called the slope, and the y-intercept is $(0, b)$.

Point-Slope Equation

The point-slope equation of the line with slope m passing through $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Parallel Lines

Vertical lines are parallel. Nonvertical lines are parallel if and only if they have the same slope and different y-intercepts.

Perpendicular Lines

Two lines with slopes m_{1} and m_{2} are perpendicular if and only if the product of their slopes is -1 :

$$
m_{1} m_{2}=-1
$$

Lines are also perpendicular if one is vertical $(x=a)$ and the other is horizontal $(y=b)$.

Find the slope and y-intercept of the equation

1. $y=\frac{3}{5} x-7$
2. $f(x)=-2 x+3$
3. $x=-\frac{2}{5}$
4. $y=\frac{4}{7}$
5. $f(x)=5-\frac{1}{2} x$
6. $y=2+\frac{3}{7} x$
7. $3 x+2 y=10$
8. $2 x-3 y=12$
9. $y=-6$
10. $x=10$
11. $5 y-4 x=8$
12. $5 x-2 y+9=0$

Pick off the slope and y-intercept from the graph. Then write as an equation

Graph the equation using the slope and y-intercept. (Shortcut hint: just find the x-intercept and y intercept. Plot those two points. Draw a line between 'em)
19. $y=-\frac{1}{2} x-3$
20. $y=\frac{3}{2} x+1$
21. $f(x)=3 x-1$
22. $f(x)=-2 x+5$
23. $3 x-4 y=20$
24. $2 x+3 y=15$
25. $x+3 y=18$
26. $5 y-2 x=-20$

Write the canonical slope-intercept form of the following lines
27. $m=\frac{2}{9}, y$-intercept $(0,4)$
28. $m=-\frac{3}{8}, y$-intercept $(0,5)$
29. $m=-4, y$-intercept $(0,-7)$
30. $m=\frac{2}{7}, y$-intercept $(0,-6)$
31. $m=-4.2, y$-intercept $\left(0, \frac{3}{4}\right)$
32. $m=-4, y$-intercept $\left(0,-\frac{3}{2}\right)$
33. $m=\frac{2}{9}$, passes through $(3,7)$
34. $m=-\frac{3}{8}$, passes through $(5,6)$
35. $m=3$, passes through $(1,-2)$
36. $m=-2$, passes through $(-5,1)$
37. $m=-\frac{3}{5}$, passes through $(-4,-1)$
38. $m=\frac{2}{3}$, passes through $(-4,-5)$
39. Passes through $(-1,5)$ and $(2,-4)$
40. Passes through $(2,-1)$ and $(7,-11)$
41. Passes through $(7,0)$ and $(-1,4)$
42. Passes through $(-3,7)$ and $(-1,-5)$
43. Passes through $(0,-6)$ and $(3,-4)$
44. Passes through $(-5,0)$ and $\left(0, \frac{4}{5}\right)$

Write the slope-intercept equation for a line passing through the given point and perpendicular to the given line. Plot things out.
57. $(3,5), y=\frac{2}{7} x+1$
58. $(-1,6), f(x)=2 x+9$
59. $(-7,0), y=-0.3 x+4.3$
60. $(-4,-5), 2 x+y=-4$
61. $(3,-2), 3 x+4 y=5$
62. $(8,-2), y=4.2(x-3)+1$
63. $(3,-3), x=-1$
64. $(4,-5), y=-1$

Exercise Set 1.4

1. $\frac{3}{5} ;(0,-7) \quad$ 3. Slope is not defined; there is no
y-intercept.
2. $-\frac{3}{2} ;(0,5)$
3. $0 ;(0,-6)$
4. $-\frac{1}{2} ;(0,5)$
5. $\frac{4}{5} ;\left(0, \frac{8}{5}\right)$
6. $-1,(0,0) ; y=-x$
7.

23.

27. $y=\frac{2}{9} x+4$
29. $y=-4 x-7$
31. $y=-4.2 x+\frac{3}{4}$
33. $y=\frac{2}{9} x+\frac{19}{3}$
35. $y=3 x-5$
37. $y=-\frac{3}{5} x-\frac{17}{5}$
39. $y=-3 x+2$
41. $y=-\frac{1}{2} x+\frac{7}{2}$
43. $y=\frac{2}{3} x-6$
45. Horizontal: $y=-3$; vertical: $x=0$
47. Horizontal: $y=-1$; vertical: $x=\frac{2}{11}$
49. Perpendicular
51. Neither parallel nor perpendicular 53. Parallel
55. Perpendicular 57. $y=\frac{2}{7} x+\frac{29}{7} ; y=-\frac{7}{2} x+\frac{31}{2}$
59. $y=-0.3 x-2.1 ; y=\frac{10}{3} x+\frac{70}{3}$
61. $y=-\frac{3}{4} x+\frac{1}{4} ; y=\frac{4}{3} x-6 \quad$ 63. $x=3 ; y=-3$
65. True 67. True 69. False 71. No 73. Yes
75. (a) Model I , using $(0,7.8)$ and ($20,6.4$):
$y=-0.07 x+7.8$; model II, using ($10,7.3$) and ($32,4.9$):
$y=-\frac{6}{55} x+\frac{923}{110} ;$ (b) model I: about 5.2 days; model II: about 4.4 days; (c) model II \quad 77. Using ($1,10,424$) and ($3,11,717$):

