Algebra and Trigonometry Chapter R Test Formula Sheet

Properties of the Real Numbers

Commutative:

$$
\begin{aligned}
& a+b=b+a \\
& a b=b a
\end{aligned}
$$

Associative:

$$
a+(b+c)=
$$

$$
(a+b)+c
$$

$$
a(b c)=(a b) c
$$

Additive Identity:

$$
a+0=0+a=a
$$

Additive Inverse:
$-a+a=$

$$
a+(-a)=0
$$

Multiplicative Identity: $a \cdot 1=1 \cdot a=a$
Multiplicative Inverse: $\quad a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1$
($a \neq 0$)
Distributive:

$$
a(b+c)=a b+a c
$$

Absolute Value

For any real number a,

$$
|a|= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

Special Products of Binomials

$$
\begin{aligned}
& (A+B)^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=A^{2}-2 A B+B^{2} \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

Sum or Difference of Cubes

$$
\begin{aligned}
& A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \\
& A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
\end{aligned}
$$

Properties of Exponents

For any real numbers a and b and any integers m and n, assuming 0 is not raised to a nonpositive power:

The Product Rule: $\quad a^{m} \cdot a^{n}=a^{m+n}$
The Quotient Rule: $\frac{a^{m}}{a^{n}}=a^{m-n} \quad(a \neq 0)$
The Power Rule: $\quad\left(a^{m}\right)^{n}=a^{m n}$
Raising a Product to a Power: $\quad(a b)^{m}=a^{m} b^{m}$
Raising a Quotient to a Power:

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad(b \neq 0)
$$

Properties of Radicals

Let a and b be any real numbers or expressions for which the given roots exist. For any natural numbers m and $n(n \neq 1)$:

$$
\begin{aligned}
& \text { If } n \text { is even, } \sqrt[n]{a^{n}}=|a| . \\
& \text { If } n \text { is odd, } \sqrt[n]{a^{n}}=a . \\
& \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b} . \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad(b \neq 0) . \\
& \sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
\end{aligned}
$$

Rational Exponents

For any real number a and any natural numbers m and $n, n \geq 2$, for which $\sqrt[n]{a}$ exists,

$$
\begin{aligned}
& a^{1 / n}=\sqrt[n]{a} \\
& a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}, \quad \text { and } \\
& a^{-m / n}=\frac{1}{a^{m / n}}
\end{aligned}
$$

Name: \qquad

Date: \qquad
Algebra \& Trigonometry Test, Chapter R Show all work.

Add and simplify
Problem 1:

$$
\left(3 x^{4}-2 x^{2}+6 x\right)-\left(5 x^{3}-3 x^{2}+x\right)
$$

Multiply the following polynomials.

Problem 2:

$$
(x+3)(2 x-5)
$$

Problem 3:
$(2 y-1)^{2}$

Problem 4:

$$
(2+\sqrt{3})(5-2 \sqrt{3})
$$

Factor the following polynomials

Problem 5:

$$
y^{2}-3 y-18
$$

Problem 6:

$$
x^{3}+10 x^{2}+25 x
$$

Simplify the following expression.

Problem 7:

$$
\left(-3 a^{5} b^{-4}\right)\left(5 a^{-1} b^{3}\right)
$$

Simplify the following expression.

Problem 8:

$$
\frac{\frac{x}{y}-\frac{y}{x}}{x+y}
$$

Useful Hint:
Step 1: Focus on just the numerator. Add those two fractions to get a single rational expression Step 2: Now look at the denominator as well. Cancel out any common terms to simplify

