Algebra and Trigonometry Chapter R Test Formula Sheet

Р

Properties of the Real Numbers	
Commutative:	a+b=b+a;
	ab = ba
Associative:	a + (b + c) =
	(a + b) + c;
	a(bc) = (ab)c
Additive Identity:	a+0=0+a=a
Additive Inverse:	-a + a =
	a+(-a)=0
Multiplicative Identity	$: a \cdot 1 = 1 \cdot a = a$
Multiplicative Inverse:	$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$
winnpucative inverse.	a a a
	$(a \neq 0)$
Distributive:	a(b+c)=ab+ac

Absolute Value

For any real number a,

$$|a| = \begin{cases} a, & \text{if } a \ge 0, \\ -a, & \text{if } a < 0. \end{cases}$$

Special Products of Binomials

 $(A + B)^{2} = A^{2} + 2AB + B^{2}$ $(A - B)^{2} = A^{2} - 2AB + B^{2}$ $(A + B)(A - B) = A^{2} - B^{2}$

Sum or Difference of Cubes

 $A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$ $A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$

Properties of Exponents

For any real numbers a and b and any integers m and n, assuming 0 is not raised to a nonpositive power:

The Product Rule: $a^m \cdot a^n = a^{m+n}$ The Quotient Rule: $\frac{a^m}{a^n} = a^{m-n}$ $(a \neq 0)$ The Power Rule: $(a^m)^n = a^{mn}$ Raising a Product to a Power: $(ab)^m = a^m b^m$ Raising a Quotient to a Power:

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \quad (b \neq 0)$$

Properties of Radicals

Let *a* and *b* be any real numbers or expressions for which the given roots exist. For any natural numbers *m* and $n (n \neq 1)$:

If *n* is even,
$$\sqrt[n]{a^n} = |a|$$
.
If *n* is odd, $\sqrt[n]{a^n} = a$.
 $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$.
 $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad (b \neq 0)$.
 $\sqrt[n]{a^m} = (\sqrt[n]{a})^m$.

Rational Exponents

For any real number *a* and any natural numbers *m* and *n*, $n \ge 2$, for which $\sqrt[n]{a}$ exists,

$$a^{1/n} = \sqrt[n]{a},$$

$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m, \text{ and }$$

$$a^{-m/n} = \frac{1}{a^{m/n}}.$$

Name: _____

Date: _____

Algebra & Trigonometry Test, Chapter R Show all work.

Add and simplify

Problem 1:
$$(3x^4 - 2x^2 + 6x) - (5x^3 - 3x^2 + x)$$

Multiply the following polynomials.

Problem 2:
$$(x + 3)(2x - 5)$$

Problem 3:

$$(2y-1)^2$$

Problem 4: $(2 + \sqrt{3})(5 - 2\sqrt{3})$

Factor the following polynomials

Problem 5:
$$y^2 - 3y - 18$$

$$x^3 + 10x^2 + 25x$$

Simplify the following expression.

Problem 7:
$$(-3a^5b^{-4})(5a^{-1}b^3)$$

Simplify the following expression.

Problem 8:	$\frac{x}{y}$
	y x
	x + y

Useful Hint:

Step 1: Focus on just the numerator. Add those two fractions to get a single rational expression

Step 2: Now look at the denominator as well. Cancel out any common terms to simplify