
CHAPTER 1

Vectors in Rn and Cn,
Spatial Vectors

1.1 Introduction

There are two ways to motivate the notion of a vector: one is by means of lists of numbers and subscripts,
and the other is by means of certain objects in physics. We discuss these two ways below.

Here we assume the reader is familiar with the elementary properties of the field of real numbers,
denoted by R. On the other hand, we will review properties of the field of complex numbers, denoted by
C. In the context of vectors, the elements of our number fields are called scalars.

Although we will restrict ourselves in this chapter to vectors whose elements come from R and then
from C, many of our operations also apply to vectors whose entries come from some arbitrary field K .

Lists of Numbers

Suppose the weights (in pounds) of eight students are listed as follows:

156; 125; 145; 134; 178; 145; 162; 193

One can denote all the values in the list using only one symbol, say w, but with different subscripts; that is,

w1; w2; w3; w4; w5; w6; w7; w8

Observe that each subscript denotes the position of the value in the list. For example,

w1 ¼ 156; the first number; w2 ¼ 125; the second number; . . .

Such a list of values,

w ¼ ðw1;w2;w3; . . . ;w8Þ
is called a linear array or vector.

Vectors in Physics

Many physical quantities, such as temperature and speed, possess only ‘‘magnitude.’’ These quantities
can be represented by real numbers and are called scalars. On the other hand, there are also quantities,
such as force and velocity, that possess both ‘‘magnitude’’ and ‘‘direction.’’ These quantities, which can
be represented by arrows having appropriate lengths and directions and emanating from some given
reference point O, are called vectors.

Now we assume the reader is familiar with the space R3 where all the points in space are represented
by ordered triples of real numbers. Suppose the origin of the axes in R3 is chosen as the reference point O
for the vectors discussed above. Then every vector is uniquely determined by the coordinates of its
endpoint, and vice versa.

There are two important operations, vector addition and scalar multiplication, associated with vectors
in physics. The definition of these operations and the relationship between these operations and the
endpoints of the vectors are as follows.
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(i) Vector Addition: The resultant uþ v of two vectors u and v is obtained by the parallelogram law;
that is, uþ v is the diagonal of the parallelogram formed by u and v. Furthermore, if ða; b; cÞ and
ða0; b0; c0Þ are the endpoints of the vectors u and v, then ðaþ a0; bþ b0; cþ c0Þ is the endpoint of the
vector uþ v. These properties are pictured in Fig. 1-1(a).

(ii) Scalar Multiplication: The product ku of a vector u by a real number k is obtained by multiplying
the magnitude of u by k and retaining the same direction if k > 0 or the opposite direction if k < 0.
Also, if ða; b; cÞ is the endpoint of the vector u, then ðka; kb; kcÞ is the endpoint of the vector ku.
These properties are pictured in Fig. 1-1(b).

Mathematically, we identify the vector u with its ða; b; cÞ and write u ¼ ða; b; cÞ. Moreover, we call
the ordered triple ða; b; cÞ of real numbers a point or vector depending upon its interpretation. We
generalize this notion and call an n-tuple ða1; a2; . . . ; anÞ of real numbers a vector. However, special
notation may be used for the vectors in R3 called spatial vectors (Section 1.6).

1.2 Vectors in Rn

The set of all n-tuples of real numbers, denoted by Rn, is called n-space. A particular n-tuple in Rn, say

u ¼ ða1; a2; . . . ; anÞ

is called a point or vector. The numbers ai are called the coordinates, components, entries, or elements
of u. Moreover, when discussing the space Rn, we use the term scalar for the elements of R.

Two vectors, u and v, are equal, written u ¼ v, if they have the same number of components and if the
corresponding components are equal. Although the vectors ð1; 2; 3Þ and ð2; 3; 1Þ contain the same three
numbers, these vectors are not equal because corresponding entries are not equal.

The vector ð0; 0; . . . ; 0Þ whose entries are all 0 is called the zero vector and is usually denoted by 0.

EXAMPLE 1.1

(a) The following are vectors:

ð2;�5Þ; ð7; 9Þ; ð0; 0; 0Þ; ð3; 4; 5Þ

The first two vectors belong to R2, whereas the last two belong to R3. The third is the zero vector in R3.

(b) Find x; y; z such that ðx� y; xþ y; z� 1Þ ¼ ð4; 2; 3Þ.
By definition of equality of vectors, corresponding entries must be equal. Thus,

x� y ¼ 4; xþ y ¼ 2; z� 1 ¼ 3

Solving the above system of equations yields x ¼ 3, y ¼ �1, z ¼ 4.

Figure 1-1
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Column Vectors

Sometimes a vector in n-space Rn is written vertically rather than horizontally. Such a vector is called a
column vector, and, in this context, the horizontally written vectors in Example 1.1 are called row
vectors. For example, the following are column vectors with 2; 2; 3, and 3 components, respectively:

1
2

� �
;

3
�4

� �
;

1
5

�6

2
4

3
5;

1:5
2
3

�15

2
64

3
75

We also note that any operation defined for row vectors is defined analogously for column vectors.

1.3 Vector Addition and Scalar Multiplication

Consider two vectors u and v in Rn, say

u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ

Their sum, written uþ v, is the vector obtained by adding corresponding components from u and v. That is,

uþ v ¼ ða1 þ b1; a2 þ b2; . . . ; an þ bnÞ

The scalar product or, simply, product, of the vector u by a real number k, written ku, is the vector
obtained by multiplying each component of u by k. That is,

ku ¼ kða1; a2; . . . ; anÞ ¼ ðka1; ka2; . . . ; kanÞ

Observe that uþ v and ku are also vectors in Rn. The sum of vectors with different numbers of
components is not defined.

Negatives and subtraction are defined in Rn as follows:

�u ¼ ð�1Þu and u� v ¼ uþ ð�vÞ

The vector �u is called the negative of u, and u� v is called the difference of u and v.
Now suppose we are given vectors u1; u2; . . . ; um in Rn and scalars k1; k2; . . . ; km in R. We can

multiply the vectors by the corresponding scalars and then add the resultant scalar products to form the
vector

v ¼ k1u1 þ k2u2 þ k3u3 þ � � �þ kmum

Such a vector v is called a linear combination of the vectors u1; u2; . . . ; um.

EXAMPLE 1.2

(a) Let u ¼ ð2; 4;�5Þ and v ¼ ð1;�6; 9Þ. Then

uþ v ¼ ð2þ 1; 4þ ð�5Þ; �5þ 9Þ ¼ ð3;�1; 4Þ
7u ¼ ð7ð2Þ; 7ð4Þ; 7ð�5ÞÞ ¼ ð14; 28;�35Þ
�v ¼ ð�1Þð1;�6; 9Þ ¼ ð�1; 6;�9Þ

3u� 5v ¼ ð6; 12;�15Þ þ ð�5; 30;�45Þ ¼ ð1; 42;�60Þ

(b) The zero vector 0 ¼ ð0; 0; . . . ; 0Þ in Rn is similar to the scalar 0 in that, for any vector u ¼ ða1; a2; . . . ; anÞ.
uþ 0 ¼ ða1 þ 0; a2 þ 0; . . . ; an þ 0Þ ¼ ða1; a2; . . . ; anÞ ¼ u

(c) Let u ¼
2
3

�4

2
4

3
5 and v ¼

3
�1
�2

2
4

3
5. Then 2u� 3v ¼

4
6

�8

2
4

3
5þ

�9
3
6

2
4

3
5 ¼

�5
9

�2

2
4

3
5.
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Basic properties of vectors under the operations of vector addition and scalar multiplication are
described in the following theorem.

THEOREM 1.1: For any vectors u; v;w in Rn and any scalars k; k0 in R,

(i) ðuþ vÞ þ w ¼ uþ ðv þ wÞ, (v) kðuþ vÞ ¼ kuþ kv,

(ii) uþ 0 ¼ u; (vi) ðk þ k0Þu ¼ kuþ k0u,

(iii) uþ ð�uÞ ¼ 0; (vii) (kk’)u=k(k’u);

(iv) uþ v ¼ v þ u, (viii) 1u ¼ u.

We postpone the proof of Theorem 1.1 until Chapter 2, where it appears in the context of matrices
(Problem 2.3).

Suppose u and v are vectors in Rn for which u ¼ kv for some nonzero scalar k in R. Then u is called a
multiple of v. Also, u is said to be in the same or opposite direction as v according to whether k > 0 or
k < 0.

1.4 Dot (Inner) Product

Consider arbitrary vectors u and v in Rn; say,

u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ
The dot product or inner product or scalar product of u and v is denoted and defined by

u � v ¼ a1b1 þ a2b2 þ � � �þ anbn

That is, u � v is obtained by multiplying corresponding components and adding the resulting products.
The vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero—that is, if
u � v ¼ 0.

EXAMPLE 1.3

(a) Let u ¼ ð1;�2; 3Þ, v ¼ ð4; 5;�1Þ, w ¼ ð2; 7; 4Þ. Then,

u � v ¼ 1ð4Þ� 2ð5Þ þ 3ð�1Þ ¼ 4� 10� 3 ¼ �9

u � w ¼ 2� 14þ 12 ¼ 0; v � w ¼ 8þ 35� 4 ¼ 39

Thus, u and w are orthogonal.

(b) Let u ¼
2
3

�4

2
4

3
5 and v ¼

3
�1
�2

2
4

3
5. Then u � v ¼ 6� 3þ 8 ¼ 11.

(c) Suppose u ¼ ð1; 2; 3; 4Þ and v ¼ ð6; k;�8; 2Þ. Find k so that u and v are orthogonal.

First obtain u � v ¼ 6þ 2k � 24þ 8 ¼ �10þ 2k. Then set u � v ¼ 0 and solve for k:

�10þ 2k ¼ 0 or 2k ¼ 10 or k ¼ 5

Basic properties of the dot product in Rn (proved in Problem 1.13) follow.

THEOREM 1.2: For any vectors u; v;w in Rn and any scalar k in R:

(i) ðuþ vÞ � w ¼ u � wþ v � w; (iii) u � v ¼ v � u,
(ii) ðkuÞ � v ¼ kðu � vÞ, (iv) u � u � 0; and u � u ¼ 0 iff u ¼ 0.

Note that (ii) says that we can ‘‘take k out’’ from the first position in an inner product. By (iii) and (ii),

u � ðkvÞ ¼ ðkvÞ � u ¼ kðv � uÞ ¼ kðu � vÞ
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That is, we can also ‘‘take k out’’ from the second position in an inner product.
The space Rn with the above operations of vector addition, scalar multiplication, and dot product is

usually called Euclidean n-space.

Norm (Length) of a Vector

The norm or length of a vector u in Rn, denoted by kuk, is defined to be the nonnegative square root of
u � u. In particular, if u ¼ ða1; a2; . . . ; anÞ, then

kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ � � �þ a2n

q

That is, kuk is the square root of the sum of the squares of the components of u. Thus, kuk � 0, and
kuk ¼ 0 if and only if u ¼ 0.

A vector u is called a unit vector if kuk ¼ 1 or, equivalently, if u � u ¼ 1. For any nonzero vector v in
Rn, the vector

v̂ ¼ 1

kvk v ¼ v

kvk
is the unique unit vector in the same direction as v. The process of finding v̂ from v is called normalizing v.

EXAMPLE 1.4

(a) Suppose u ¼ ð1;�2;�4; 5; 3Þ. To find kuk, we can first find kuk2 ¼ u � u by squaring each component of u and
adding, as follows:

kuk2 ¼ 12 þ ð�2Þ2 þ ð�4Þ2 þ 52 þ 32 ¼ 1þ 4þ 16þ 25þ 9 ¼ 55

Then kuk ¼
ffiffiffiffiffi
55

p
.

(b) Let v ¼ ð1;�3; 4; 2Þ and w ¼ ð12 ;� 1
6 ;

5
6 ;

1
6Þ. Then

kvk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9þ 16þ 4

p
¼

ffiffiffiffiffi
30

p
and kwk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

36
þ 1

36
þ 25

36
þ 1

36

r
¼

ffiffiffiffiffi
36

36

r
¼

ffiffiffi
1

p
¼ 1

Thus w is a unit vector, but v is not a unit vector. However, we can normalize v as follows:

v̂ ¼ v

kvk ¼ 1ffiffiffiffiffi
30

p ;
�3ffiffiffiffiffi
30

p ;
4ffiffiffiffiffi
30

p ;
2ffiffiffiffiffi
30

p
� �

This is the unique unit vector in the same direction as v.

The following formula (proved in Problem 1.14) is known as the Schwarz inequality or Cauchy–
Schwarz inequality. It is used in many branches of mathematics.

THEOREM 1.3 (Schwarz): For any vectors u; v in Rn, ju � vj � kukkvk.

Using the above inequality, we also prove (Problem 1.15) the following result known as the ‘‘triangle
inequality’’ or Minkowski’s inequality.

THEOREM 1.4 (Minkowski): For any vectors u; v in Rn, kuþ vk � kuk þ kvk.

Distance, Angles, Projections

The distance between vectors u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ in Rn is denoted and defined
by

dðu; vÞ ¼ ku� vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b1Þ2 þ ða2 � b2Þ2 þ � � �þ ðan � bnÞ2

q

One can show that this definition agrees with the usual notion of distance in the Euclidean plane R2 or
space R3.
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The angle y between nonzero vectors u; v in Rn is defined by

cos y ¼ u � v
kukkvk

This definition is well defined, because, by the Schwarz inequality (Theorem 1.3),

�1 � u � v
kukkvk � 1

Note that if u � v ¼ 0, then y ¼ 90� (or y ¼ p=2). This then agrees with our previous definition of
orthogonality.

The projection of a vector u onto a nonzero vector v is the vector denoted and defined by

projðu; vÞ ¼ u � v
kvk2

v ¼ u � v
v � v v

We show below that this agrees with the usual notion of vector projection in physics.

EXAMPLE 1.5

(a) Suppose u ¼ ð1;�2; 3Þ and v ¼ ð2; 4; 5Þ. Then

dðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2Þ2 þ ð�2� 4Þ2 þ ð3� 5Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 36þ 4

p
¼

ffiffiffiffiffi
41

p

To find cos y, where y is the angle between u and v, we first find

u � v ¼ 2� 8þ 15 ¼ 9; kuk2 ¼ 1þ 4þ 9 ¼ 14; kvk2 ¼ 4þ 16þ 25 ¼ 45

Then

cos y ¼ u � v
kukkvk ¼ 9ffiffiffiffiffi

14
p ffiffiffiffiffi

45
p

Also,

projðu; vÞ ¼ u � v
kvk2

v ¼ 9

45
ð2; 4; 5Þ ¼ 1

5
ð2; 4; 5Þ ¼ 2

5
;
4

5
; 1

� �

(b) Consider the vectors u and v in Fig. 1-2(a) (with respective endpoints A and B). The (perpendicular) projection
of u onto v is the vector u* with magnitude

ku*k ¼ kuk cos y ¼ kuk u � v
kukvk ¼ u � v

kvk
To obtain u*, we multiply its magnitude by the unit vector in the direction of v, obtaining

u* ¼ ku*k v

kvk ¼ u � v
kvk

v

kvk ¼ u � v
kvk2

v

This is the same as the above definition of projðu; vÞ.

Figure 1-2

z

y

x

0
u

( )b

B b b b( , , )1 2 3

u = B – A

A a a a( , , )1 2 3

P b a b a b a( – , – , – )1 1 2 2 3 3

0

u

( )a

Projection of ontou* u

A

u*
B

Cθ
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1.5 Located Vectors, Hyperplanes, Lines, Curves in Rn

This section distinguishes between an n-tuple PðaiÞ � Pða1; a2; . . . ; anÞ viewed as a point in Rn and an
n-tuple u ¼ ½c1; c2; . . . ; cn� viewed as a vector (arrow) from the origin O to the point Cðc1; c2; . . . ; cnÞ.

Located Vectors

Any pair of points AðaiÞ and BðbiÞ in Rn defines the located vector or directed line segment from A to B,

written AB
�!

. We identify AB
�!

with the vector

u ¼ B� A ¼ ½b1 � a1; b2 � a2; . . . ; bn � an�
because AB

�!
and u have the same magnitude and direction. This is pictured in Fig. 1-2(b) for the

points Aða1; a2; a3Þ and Bðb1; b2; b3Þ in R3 and the vector u ¼ B� A which has the endpoint
Pðb1 � a1, b2 � a2, b3 � a3Þ.

Hyperplanes

A hyperplane H in Rn is the set of points ðx1; x2; . . . ; xnÞ that satisfy a linear equation

a1x1 þ a2x2 þ � � �þ anxn ¼ b

where the vector u ¼ ½a1; a2; . . . ; an� of coefficients is not zero. Thus a hyperplane H in R2 is a line, and a
hyperplane H in R3 is a plane. We show below, as pictured in Fig. 1-3(a) for R3, that u is orthogonal to
any directed line segment PQ

�!
, where Pð piÞ and QðqiÞ are points in H : [For this reason, we say that u is

normal to H and that H is normal to u:]

Because Pð piÞ and QðqiÞ belong to H ; they satisfy the above hyperplane equation—that is,

a1 p1 þ a2 p2 þ � � �þ an pn ¼ b and a1q1 þ a2q2 þ � � �þ anqn ¼ b

v ¼ PQ
�! ¼ Q� P ¼ ½q1 � p1; q2 � p2; . . . ; qn � pn�Let

Then

u � v ¼ a1ðq1 � p1Þ þ a2ðq2 � p2Þ þ � � �þ anðqn � pnÞ
¼ ða1q1 þ a2q2 þ � � �þ anqnÞ� ða1 p1 þ a2 p2 þ � � �þ an pnÞ ¼ b� b ¼ 0

Thus v ¼ PQ
�!

is orthogonal to u; as claimed.

Figure 1-3
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Lines in Rn

The line L in Rn passing through the point Pðb1; b2; . . . ; bnÞ and in the direction of a nonzero vector
u ¼ ½a1; a2; . . . ; an� consists of the points X ðx1; x2; . . . ; xnÞ that satisfy

X ¼ Pþ tu or

x1 ¼ a1t þ b1
x2 ¼ a2t þ b2
::::::::::::::::::::
xn ¼ ant þ bn

or LðtÞ ¼ ðait þ biÞ

8
>><
>>:

where the parameter t takes on all real values. Such a line L in R3 is pictured in Fig. 1-3(b).

EXAMPLE 1.6

(a) Let H be the plane in R3 corresponding to the linear equation 2x� 5yþ 7z ¼ 4. Observe that Pð1; 1; 1Þ and
Qð5; 4; 2Þ are solutions of the equation. Thus P and Q and the directed line segment

v ¼ PQ
�! ¼ Q� P ¼ ½5� 1; 4� 1; 2� 1� ¼ ½4; 3; 1�

lie on the plane H . The vector u ¼ ½2;�5; 7� is normal to H , and, as expected,

u � v ¼ ½2;�5; 7� � ½4; 3; 1� ¼ 8� 15þ 7 ¼ 0

That is, u is orthogonal to v.

(b) Find an equation of the hyperplane H in R4 that passes through the point Pð1; 3;�4; 2Þ and is normal to the
vector u ¼ ½4;�2; 5; 6�.

The coefficients of the unknowns of an equation of H are the components of the normal vector u; hence, the
equation of H must be of the form

4x1 � 2x2 þ 5x3 þ 6x4 ¼ k

Substituting P into this equation, we obtain

4ð1Þ� 2ð3Þ þ 5ð�4Þ þ 6ð2Þ ¼ k or 4� 6� 20þ 12 ¼ k or k ¼ �10

Thus, 4x1 � 2x2 þ 5x3 þ 6x4 ¼ �10 is the equation of H .

(c) Find the parametric representation of the line L in R4 passing through the point Pð1; 2; 3;�4Þ and in the
direction of u ¼ ½5; 6;�7; 8�. Also, find the point Q on L when t ¼ 1.

Substitution in the above equation for L yields the following parametric representation:

x1 ¼ 5t þ 1; x2 ¼ 6t þ 2; x3 ¼ �7t þ 3; x4 ¼ 8t � 4

or, equivalently,

LðtÞ ¼ ð5t þ 1; 6t þ 2;�7t þ 3; 8t � 4Þ

Note that t ¼ 0 yields the point P on L. Substitution of t ¼ 1 yields the point Qð6; 8;�4; 4Þ on L.

Curves in Rn

Let D be an interval (finite or infinite) on the real line R. A continuous function F:D ! Rn is a curve in
Rn. Thus, to each point t 2 D there is assigned the following point in Rn:

FðtÞ ¼ ½F1ðtÞ;F2ðtÞ; . . . ;FnðtÞ�

Moreover, the derivative (if it exists) of FðtÞ yields the vector

VðtÞ ¼ dFðtÞ
dt

¼ dF1ðtÞ
dt

;
dF2ðtÞ
dt

; . . . ;
dFnðtÞ
dt

� �
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which is tangent to the curve. Normalizing VðtÞ yields

TðtÞ ¼ VðtÞ
kVðtÞk

Thus, TðtÞ is the unit tangent vector to the curve. (Unit vectors with geometrical significance are often
presented in bold type.)

EXAMPLE 1.7 Consider the curve FðtÞ ¼ ½sin t; cos t; t� in R3. Taking the derivative of FðtÞ [or each component of
FðtÞ] yields

VðtÞ ¼ ½cos t;� sin t; 1�
which is a vector tangent to the curve. We normalize VðtÞ. First we obtain

kV ðtÞk2 ¼ cos2 t þ sin2 t þ 1 ¼ 1þ 1 ¼ 2

Then the unit tangent vection TðtÞ to the curve follows:

TðtÞ ¼ V ðtÞ
kV ðtÞk ¼ cos tffiffiffi

2
p ;

� sin tffiffiffi
2

p ;
1ffiffiffi
2

p
� �

1.6 Vectors in R3 (Spatial Vectors), ijk Notation

Vectors in R3, called spatial vectors, appear in many applications, especially in physics. In fact, a special
notation is frequently used for such vectors as follows:

i ¼ ½1; 0; 0� denotes the unit vector in the x direction:

j ¼ ½0; 1; 0� denotes the unit vector in the y direction:

k ¼ ½0; 0; 1� denotes the unit vector in the z direction:

Then any vector u ¼ ½a; b; c� in R3 can be expressed uniquely in the form

u ¼ ½a; b; c� ¼ aiþ bjþ cj

Because the vectors i; j; k are unit vectors and are mutually orthogonal, we obtain the following dot
products:

i � i ¼ 1; j � j ¼ 1; k � k ¼ 1 and i � j ¼ 0; i � k ¼ 0; j � k ¼ 0

Furthermore, the vector operations discussed above may be expressed in the ijk notation as follows.
Suppose

u ¼ a1iþ a2jþ a3k and v ¼ b1iþ b2jþ b3k

Then

uþ v ¼ ða1 þ b1Þiþ ða2 þ b2Þjþ ða3 þ b3Þk and cu ¼ ca1iþ ca2jþ ca3k

where c is a scalar. Also,

u � v ¼ a1b1 þ a2b2 þ a3b3 and kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼ a21 þ a22 þ a23

EXAMPLE 1.8 Suppose u ¼ 3iþ 5j� 2k and v ¼ 4i� 8jþ 7k.

(a) To find uþ v, add corresponding components, obtaining uþ v ¼ 7i� 3jþ 5k

(b) To find 3u� 2v, first multiply by the scalars and then add:

3u� 2v ¼ ð9iþ 13j� 6kÞ þ ð�8iþ 16j� 14kÞ ¼ iþ 29j� 20k
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(c) To find u � v, multiply corresponding components and then add:

u � v ¼ 12� 40� 14 ¼ �42

(d) To find kuk, take the square root of the sum of the squares of the components:

kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 25þ 4

p
¼

ffiffiffiffiffi
38

p

Cross Product

There is a special operation for vectors u and v in R3 that is not defined in Rn for n 6¼ 3. This operation is
called the cross product and is denoted by u	 v. One way to easily remember the formula for u	 v is to
use the determinant (of order two) and its negative, which are denoted and defined as follows:

a b
c d

����
���� ¼ ad � bc and � a b

c d

����
���� ¼ bc� ad

Here a and d are called the diagonal elements and b and c are the nondiagonal elements. Thus, the
determinant is the product ad of the diagonal elements minus the product bc of the nondiagonal elements,
but vice versa for the negative of the determinant.

Now suppose u ¼ a1iþ a2jþ a3k and v ¼ b1iþ b2jþ b3k. Then

u	 v ¼ ða2b3 � a3b2Þiþ ða3b1 � a1b3Þjþ ða1b2 � a2b1Þk

¼ a1 a2 a3

b1 b2 b3

����
����i�

a1 a2 a3

b1 b2 b3

����
����jþ

a1 a2 a3

b1 b2 b3

����
����i

That is, the three components of u	 v are obtained from the array

a1 a2 a3
b1 b2 b3

� �

(which contain the components of u above the component of v) as follows:

(1) Cover the first column and take the determinant.
(2) Cover the second column and take the negative of the determinant.
(3) Cover the third column and take the determinant.

Note that u	 v is a vector; hence, u	 v is also called the vector product or outer product of u
and v.

EXAMPLE 1.9 Find u	 v where: (a) u ¼ 4iþ 3jþ 6k, v ¼ 2iþ 5j� 3k, (b) u ¼ ½2;�1; 5�, v ¼ ½3; 7; 6�.

(a) Use
4 3 6
2 5 �3

� �
to get u	 v ¼ ð�9� 30Þiþ ð12þ 12Þjþ ð20� 6Þk ¼ �39iþ 24jþ 14k

(b) Use
2 �1 5
3 7 6

� �
to get u	 v ¼ ½�6� 35; 15� 12; 14þ 3� ¼ ½�41; 3; 17�

Remark: The cross products of the vectors i; j;k are as follows:

i	 j ¼ k; j	 k ¼ i; k 	 i ¼ j

j	 i ¼ �k; k 	 j ¼ �i; i	 k ¼ �j

Thus, if we view the triple ði; j; kÞ as a cyclic permutation, where i follows k and hence k precedes i, then
the product of two of them in the given direction is the third one, but the product of two of them in the
opposite direction is the negative of the third one.

Two important properties of the cross product are contained in the following theorem.
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THEOREM 1.5: Let u; v;w be vectors in R3.

(a) The vector u	 v is orthogonal to both u and v.

(b) The absolute value of the ‘‘triple product’’

u � v 	 w

represents the volume of the parallelopiped formed by the vectors u; v, w.
[See Fig. 1-4(a).]

We note that the vectors u; v, u	 v form a right-handed system, and that the following formula
gives the magnitude of u	 v:

ku	 vk ¼ kukkvk sin y
where y is the angle between u and v.

1.7 Complex Numbers

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair ða; bÞ of
real numbers where equality, addition, and multiplication are defined as follows:

ða; bÞ ¼ ðc; dÞ if and only if a ¼ c and b ¼ d

ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ
ða; bÞ � ðc; dÞ ¼ ðac� bd; ad þ bcÞ

We identify the real number a with the complex number ða; 0Þ; that is,
a $ ða; 0Þ

This is possible because the operations of addition and multiplication of real numbers are preserved under
the correspondence; that is,

ða; 0Þ þ ðb; 0Þ ¼ ðaþ b; 0Þ and ða; 0Þ � ðb; 0Þ ¼ ðab; 0Þ
Thus we view R as a subset of C, and replace ða; 0Þ by a whenever convenient and possible.

We note that the set C of complex numbers with the above operations of addition and multiplication is
a field of numbers, like the set R of real numbers and the set Q of rational numbers.

Figure 1-4
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The complex number ð0; 1Þ is denoted by i. It has the important property that

i2 ¼ ii ¼ ð0; 1Þð0; 1Þ ¼ ð�1; 0Þ ¼ �1 or i ¼
ffiffiffiffiffiffiffi
�1

p

Accordingly, any complex number z ¼ ða; bÞ can be written in the form

z ¼ ða; bÞ ¼ ða; 0Þ þ ð0; bÞ ¼ ða; 0Þ þ ðb; 0Þ � ð0; 1Þ ¼ aþ bi

The above notation z ¼ aþ bi, where a � Re z and b � Im z are called, respectively, the real and
imaginary parts of z, is more convenient than ða; bÞ. In fact, the sum and product of complex numbers
z ¼ aþ bi and w ¼ cþ di can be derived by simply using the commutative and distributive laws and
i2 ¼ �1:

zþ w ¼ ðaþ biÞ þ ðcþ diÞ ¼ aþ cþ biþ di ¼ ðaþ bÞ þ ðcþ dÞi
zw ¼ ðaþ biÞðcþ diÞ ¼ acþ bciþ adiþ bdi2 ¼ ðac� bdÞ þ ðbcþ adÞi

We also define the negative of z and subtraction in C by

�z ¼ �1z and w� z ¼ wþ ð�zÞ

Warning: The letter i representing
ffiffiffiffiffiffiffi
�1

p
has no relationship whatsoever to the vector i ¼ ½1; 0; 0� in

Section 1.6.

Complex Conjugate, Absolute Value

Consider a complex number z ¼ aþ bi. The conjugate of z is denoted and defined by

�z ¼ aþ bi ¼ a� bi

Then z�z ¼ ðaþ biÞða� biÞ ¼ a2 � b2i2 ¼ a2 þ b2. Note that z is real if and only if �z ¼ z.
The absolute value of z, denoted by jzj, is defined to be the nonnegative square root of z�z. Namely,

jzj ¼
ffiffiffiffi
z�z

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

Note that jzj is equal to the norm of the vector ða; bÞ in R2.
Suppose z 6¼ 0. Then the inverse z�1 of z and division in C of w by z are given, respectively, by

z�1 ¼ �z

z�z
¼ a

a2 þ b2
� b

a2 þ b2
i and

w

z
� w�z

z�z
¼ wz�1

EXAMPLE 1.10 Suppose z ¼ 2þ 3i and w ¼ 5� 2i. Then

zþ w ¼ ð2þ 3iÞ þ ð5� 2iÞ ¼ 2þ 5þ 3i� 2i ¼ 7þ i

zw ¼ ð2þ 3iÞð5� 2iÞ ¼ 10þ 15i� 4i� 6i2 ¼ 16þ 11i

�z ¼ 2þ 3i ¼ 2� 3i and �w ¼ 5� 2i ¼ 5þ 2i

w

z
¼ 5� 2i

2þ 3i
¼ ð5� 2iÞð2� 3iÞ

ð2þ 3iÞð2� 3iÞ ¼
4� 19i

13
¼ 4

13
� 19

13
i

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffi
4þ 9

p
¼

ffiffiffiffiffi
13

p
and jwj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 4

p
¼

ffiffiffiffiffi
29

p

Complex Plane

Recall that the real numbers R can be represented by points on a line. Analogously, the complex numbers
C can be represented by points in the plane. Specifically, we let the point ða; bÞ in the plane represent the
complex number aþ bi as shown in Fig. 1-4(b). In such a case, jzj is the distance from the origin O to the
point z. The plane with this representation is called the complex plane, just like the line representing R is
called the real line.
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1.8 Vectors in Cn

The set of all n-tuples of complex numbers, denoted by Cn, is called complex n-space. Just as in the real
case, the elements of Cn are called points or vectors, the elements of C are called scalars, and vector
addition in Cn and scalar multiplication on Cn are given by

½z1; z2; . . . ; zn�þ ½w1;w2; . . . ;wn� ¼ ½z1 þ w1; z2 þ w2; . . . ; zn þ wn�
z½z1; z2; . . . ; zn� ¼ ½zz1; zz2; . . . ; zzn�

where the zi, wi, and z belong to C.

EXAMPLE 1.11 Consider vectors u ¼ ½2þ 3i; 4� i; 3� and v ¼ ½3� 2i; 5i; 4� 6i� in C3. Then

uþ v ¼ ½2þ 3i; 4� i; 3�þ ½3� 2i; 5i; 4� 6i� ¼ ½5þ i; 4þ 4i; 7� 6i�
ð5� 2iÞu ¼ ½ð5� 2iÞð2þ 3iÞ; ð5� 2iÞð4� iÞ; ð5� 2iÞð3Þ� ¼ ½16þ 11i; 18� 13i; 15� 6i�

Dot (Inner) Product in Cn

Consider vectors u ¼ ½z1; z2; . . . ; zn� and v ¼ ½w1;w2; . . . ;wn� in Cn. The dot or inner product of u and v is
denoted and defined by

u � v ¼ z1 �w1 þ z2 �w2 þ � � �þ zn �wn

This definition reduces to the real case because �wi ¼ wi when wi is real. The norm of u is defined by

kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1�z1 þ z2�z2 þ � � �þ zn�zn

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ jz2j2 þ � � �þ jvnj2

q

We emphasize that u � u and so kuk are real and positive when u 6¼ 0 and 0 when u ¼ 0.

EXAMPLE 1.12 Consider vectors u ¼ ½2þ 3i; 4� i; 3þ 5i� and v ¼ ½3� 4i; 5i; 4� 2i� in C3. Then

u � v ¼ ð2þ 3iÞð3� 4iÞ þ ð4� iÞð5iÞ þ ð3þ 5iÞð4� 2iÞ
¼ ð2þ 3iÞð3þ 4iÞ þ ð4� iÞð�5iÞ þ ð3þ 5iÞð4þ 2iÞ
¼ ð�6þ 13iÞ þ ð�5� 20iÞ þ ð2þ 26iÞ ¼ �9þ 19i

u � u ¼ j2þ 3ij2 þ j4� ij2 þ j3þ 5ij2 ¼ 4þ 9þ 16þ 1þ 9þ 25 ¼ 64

kuk ¼
ffiffiffiffiffi
64

p
¼ 8

The space Cn with the above operations of vector addition, scalar multiplication, and dot product, is
called complex Euclidean n-space. Theorem 1.2 for Rn also holds for Cn if we replace u � v ¼ v � u by

u � v ¼ u � v
On the other hand, the Schwarz inequality (Theorem 1.3) and Minkowski’s inequality (Theorem 1.4) are
true for Cn with no changes.

SOLVED PROBLEMS

Vectors in Rn

1.1. Determine which of the following vectors are equal:

u1 ¼ ð1; 2; 3Þ; u2 ¼ ð2; 3; 1Þ; u3 ¼ ð1; 3; 2Þ; u4 ¼ ð2; 3; 1Þ

Vectors are equal only when corresponding entries are equal; hence, only u2 ¼ u4.
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Algebra of Matrices

2.1 Introduction

This chapter investigates matrices and algebraic operations defined on them. These matrices may be
viewed as rectangular arrays of elements where each entry depends on two subscripts (as compared with
vectors, where each entry depended on only one subscript). Systems of linear equations and their
solutions (Chapter 3) may be efficiently investigated using the language of matrices. Furthermore, certain
abstract objects introduced in later chapters, such as ‘‘change of basis,’’ ‘‘linear transformations,’’ and
‘‘quadratic forms,’’ can be represented by these matrices (rectangular arrays). On the other hand, the
abstract treatment of linear algebra presented later on will give us new insight into the structure of these
matrices.

The entries in our matrices will come from some arbitrary, but fixed, field K. The elements of K are
called numbers or scalars. Nothing essential is lost if the reader assumes that K is the real field R.

2.2 Matrices

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars
usually presented in the following form:

A ¼
a11 a12 . . . a1n
a21 a22 . . . a2n
� � � � � � � � � � � �
am1 am2 . . . amn

2
664

3
775

The rows of such a matrix A are the m horizontal lists of scalars:

ða11; a12; . . . ; a1nÞ; ða21; a22; . . . ; a2nÞ; . . . ; ðam1; am2; . . . ; amnÞ
and the columns of A are the n vertical lists of scalars:

a11
a21
. . .
am1

2
664

3
775;

a12
a22
. . .
am2

2
664

3
775; . . . ;

a1n
a2n
. . .
amn

2
664

3
775

Note that the element aij, called the ij-entry or ij-element, appears in row i and column j. We frequently
denote such a matrix by simply writing A ¼ ½aij�.

A matrix with m rows and n columns is called an m by n matrix, written m	 n. The pair of numbers m
and n is called the size of the matrix. Two matrices A and B are equal, written A ¼ B, if they have the
same size and if corresponding elements are equal. Thus, the equality of two m	 n matrices is equivalent
to a system of mn equalities, one for each corresponding pair of elements.

A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is
called a column matrix or column vector. A matrix whose entries are all zero is called a zero matrix and
will usually be denoted by 0.

27
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Matrices whose entries are all real numbers are called real matrices and are said to be matrices over R.
Analogously, matrices whose entries are all complex numbers are called complex matrices and are said to
be matrices over C. This text will be mainly concerned with such real and complex matrices.

EXAMPLE 2.1

(a) The rectangular array A ¼ 1 �4 5
0 3 �2

� �
is a 2	 3 matrix. Its rows are ð1;�4; 5Þ and ð0; 3;�2Þ,

and its columns are

1
0

� �
;

�4
3

� �
;

5
�2

� �

(b) The 2	 4 zero matrix is the matrix 0 ¼ 0 0 0 0
0 0 0 0

� �
.

(c) Find x; y; z; t such that

xþ y 2zþ t
x� y z� t

� �
¼ 3 7

1 5

� �

By definition of equality of matrices, the four corresponding entries must be equal. Thus,

xþ y ¼ 3; x� y ¼ 1; 2zþ t ¼ 7; z� t ¼ 5

Solving the above system of equations yields x ¼ 2, y ¼ 1, z ¼ 4, t ¼ �1.

2.3 Matrix Addition and Scalar Multiplication

Let A ¼ ½aij� and B ¼ ½bij� be two matrices with the same size, say m	 n matrices. The sum of A and B,
written Aþ B, is the matrix obtained by adding corresponding elements from A and B. That is,

Aþ B ¼
a11 þ b11 a12 þ b12 . . . a1n þ b1n
a21 þ b21 a22 þ b22 . . . a2n þ b2n

� � � � � � � � � � � �
am1 þ bm1 am2 þ bm2 . . . amn þ bmn

2
664

3
775

The product of the matrix A by a scalar k, written k � A or simply kA, is the matrix obtained by
multiplying each element of A by k. That is,

kA ¼
ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n
� � � � � � � � � � � �
kam1 kam2 . . . kamn

2
664

3
775

Observe that Aþ B and kA are also m	 n matrices. We also define

�A ¼ ð�1ÞA and A� B ¼ Aþ ð�BÞ

The matrix �A is called the negative of the matrix A, and the matrix A� B is called the difference of A
and B. The sum of matrices with different sizes is not defined.
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EXAMPLE 2.2 Let A ¼ 1 �2 3
0 4 5

� �
and B ¼ 4 6 8

1 �3 �7

� �
. Then

Aþ B ¼
1þ 4 �2þ 6 3þ 8

0þ 1 4þ ð�3Þ 5þ ð�7Þ

" #
¼

5 4 11

1 1 �2

" #

3A ¼
3ð1Þ 3ð�2Þ 3ð3Þ
3ð0Þ 3ð4Þ 3ð5Þ

" #
¼

3 �6 9

0 12 15

" #

2A� 3B ¼
2 �4 6

0 8 10

" #
þ

�12 �18 �24

�3 9 21

" #
¼

�10 �22 �18

�3 17 31

" #

The matrix 2A� 3B is called a linear combination of A and B.

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

THEOREM 2.1: Consider any matrices A;B;C (with the same size) and any scalars k and k0. Then

(i) ðAþ BÞ þ C ¼ Aþ ðBþ CÞ, (v) kðAþ BÞ ¼ kAþ kB,

(ii) Aþ 0 ¼ 0þ A ¼ A, (vi) ðk þ k0ÞA ¼ kAþ k0A,

(iii) Aþ ð�AÞ ¼ ð�AÞ þ A ¼ 0; (vii) ðkk0ÞA ¼ kðk0AÞ,
(iv) Aþ B ¼ Bþ A, (viii) 1 � A ¼ A.

Note first that the 0 in (ii) and (iii) refers to the zero matrix. Also, by (i) and (iv), any sum of matrices

A1 þ A2 þ � � �þ An

requires no parentheses, and the sum does not depend on the order of the matrices. Furthermore, using
(vi) and (viii), we also have

Aþ A ¼ 2A; Aþ Aþ A ¼ 3A; . . .

and so on.
The proof of Theorem 2.1 reduces to showing that the ij-entries on both sides of each matrix equation

are equal. (See Problem 2.3.)
Observe the similarity between Theorem 2.1 for matrices and Theorem 1.1 for vectors. In fact, the

above operations for matrices may be viewed as generalizations of the corresponding operations for
vectors.

2.4 Summation Symbol

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol S
(the Greek capital letter sigma).

Suppose f ðkÞ is an algebraic expression involving the letter k. Then the expression

Pn
k¼1

f ðkÞ or equivalently
Pn

k¼1 f ðkÞ

has the following meaning. First we set k ¼ 1 in f ðkÞ, obtaining
f ð1Þ

Then we set k ¼ 2 in f ðkÞ, obtaining f ð2Þ, and add this to f ð1Þ, obtaining
f ð1Þ þ f ð2Þ
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Then we set k ¼ 3 in f ðkÞ, obtaining f ð3Þ, and add this to the previous sum, obtaining

f ð1Þ þ f ð2Þ þ f ð3Þ
We continue this process until we obtain the sum

f ð1Þ þ f ð2Þ þ � � �þ f ðnÞ
Observe that at each step we increase the value of k by 1 until we reach n. The letter k is called the index,
and 1 and n are called, respectively, the lower and upper limits. Other letters frequently used as indices
are i and j.

We also generalize our definition by allowing the sum to range from any integer n1 to any integer n2.
That is, we define

Pn2
k¼n1

f ðkÞ ¼ f ðn1Þ þ f ðn1 þ 1Þ þ f ðn1 þ 2Þ þ � � �þ f ðn2Þ

EXAMPLE 2.3

(a)
P5
k¼1

xk ¼ x1 þ x2 þ x3 þ x4 þ x5 and
Pn
i¼1

aibi ¼ a1b1 þ a2b2 þ � � �þ anbn

(b)
P5
j¼2

j2 ¼ 22 þ 32 þ 42 þ 52 ¼ 54 and
Pn
i¼0

aix
i ¼ a0 þ a1xþ a2x

2 þ � � �þ anx
n

(c)
Pp
k¼1

aikbkj ¼ ai1b1j þ ai2b2j þ ai3b3j þ � � �þ aipbpj

2.5 Matrix Multiplication

The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin
with a special case.

The product AB of a row matrix A ¼ ½ai� and a column matrix B ¼ ½bi� with the same number of
elements is defined to be the scalar (or 1	 1 matrix) obtained by multiplying corresponding entries and
adding; that is,

AB ¼ ½a1; a2; . . . ; an�
b1
b2
. . .
bn

2
664

3
775 ¼ a1b1 þ a2b2 þ � � �þ anbn ¼

Pn
k¼1

akbk

We emphasize that AB is a scalar (or a 1	 1 matrix). The product AB is not defined when A and B have
different numbers of elements.

EXAMPLE 2.4

(a) ½7;�4; 5�
3
2

�1

2
4

3
5 ¼ 7ð3Þ þ ð�4Þð2Þ þ 5ð�1Þ ¼ 21� 8� 5 ¼ 8

(b) ½6;�1; 8; 3�
4

�9
�2
5

2
664

3
775 ¼ 24þ 9� 16þ 15 ¼ 32

We are now ready to define matrix multiplication in general.
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DEFINITION: Suppose A ¼ ½aik � and B ¼ ½bkj� are matrices such that the number of columns of A is
equal to the number of rows of B; say, A is an m	 p matrix and B is a p	 n matrix.
Then the product AB is the m	 n matrix whose ij-entry is obtained by multiplying the
ith row of A by the jth column of B. That is,

a11 . . . a1p
: . . . :
ai1 . . . aip
: . . . :

am1 . . . amp

2
66664

3
77775

b11 . . . b1j . . . b1n
: . . . : . . . :
: . . . : . . . :
: . . . : . . . :
bp1 . . . bpj . . . bpn

2
66664

3
77775
¼

c11 . . . c1n
: . . . :
: cij :
: . . . :

cm1 . . . cmn

2
66664

3
77775

where cij ¼ ai1b1j þ ai2b2j þ � � �þ aipbpj ¼
Pp
k¼1

aikbkj

The product AB is not defined if A is an m	 p matrix and B is a q	 n matrix, where p 6¼ q.

EXAMPLE 2.5

(a) Find AB where A ¼ 1 3
2 �1

� �
and B ¼ 2 0 �4

5 �2 6

� �
.

Because A is 2	 2 and B is 2	 3, the product AB is defined and AB is a 2	 3 matrix. To obtain
the first row of the product matrix AB, multiply the first row [1, 3] of A by each column of B,

2
5

� �
;

0
�2

� �
;

�4
6

� �

respectively. That is,

AB ¼ 2þ 15 0� 6 �4þ 18
� �

¼ 17 �6 14
� �

To obtain the second row of AB, multiply the second row ½2;�1� of A by each column of B. Thus,

AB ¼ 17 �6 14
4� 5 0þ 2 �8� 6

� �
¼ 17 �6 14

�1 2 �14

� �

(b) Suppose A ¼ 1 2
3 4

� �
and B ¼ 5 6

0 �2

� �
. Then

AB ¼ 5þ 0 6� 4
15þ 0 18� 8

� �
¼ 5 2

15 10

� �
and BA ¼ 5þ 18 10þ 24

0� 6 0� 8

� �
¼ 23 34

�6 �8

� �

The above example shows that matrix multiplication is not commutative—that is, in general,
AB 6¼BA. However, matrix multiplication does satisfy the following properties.

THEOREM 2.2: Let A;B;C be matrices. Then, whenever the products and sums are defined,

(i) ðABÞC ¼ AðBCÞ (associative law),

(ii) AðBþ CÞ ¼ ABþ AC (left distributive law),

(iii) ðBþ CÞA ¼ BAþ CA (right distributive law),

(iv) kðABÞ ¼ ðkAÞB ¼ AðkBÞ, where k is a scalar.

We note that 0A ¼ 0 and B0 ¼ 0, where 0 is the zero matrix.
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2.6 Transpose of a Matrix

The transpose of a matrix A, written AT , is the matrix obtained by writing the columns of A, in order, as
rows. For example,

1 2 3
4 5 6

� �T
¼

1 4
2 5
3 6

2
4

3
5 and ½1;�3;�5�T ¼

1
�3
�5

2
4

3
5

In other words, if A ¼ ½aij� is an m	 n matrix, then AT ¼ ½bij� is the n	 m matrix where bij ¼ aji.

Observe that the tranpose of a row vector is a column vector. Similarly, the transpose of a column
vector is a row vector.

The next theorem lists basic properties of the transpose operation.

THEOREM 2.3: Let A and B be matrices and let k be a scalar. Then, whenever the sum and product are
defined,

(i) ðAþ BÞT ¼ AT þ BT , (iii) ðkAÞT ¼ kAT ,

(ii) ðAT ÞT ¼ A; (iv) ðABÞT ¼ BTAT .

We emphasize that, by (iv), the transpose of a product is the product of the transposes, but in the
reverse order.

2.7 Square Matrices

A square matrix is a matrix with the same number of rows as columns. An n	 n square matrix is said to
be of order n and is sometimes called an n-square matrix.

Recall that not every two matrices can be added or multiplied. However, if we only consider square
matrices of some given order n, then this inconvenience disappears. Specifically, the operations of
addition, multiplication, scalar multiplication, and transpose can be performed on any n	 n matrices, and
the result is again an n	 n matrix.

EXAMPLE 2.6 The following are square matrices of order 3:

A ¼
1 2 3

�4 �4 �4
5 6 7

2
4

3
5 and B ¼

2 �5 1
0 3 �2
1 2 �4

2
4

3
5

The following are also matrices of order 3:

Aþ B ¼
3 �3 4

�4 �1 �6

6 8 3

2
64

3
75; 2A ¼

2 4 6

�8 �8 �8

10 12 14

2
64

3
75; AT ¼

1 �4 5

2 �4 6

3 �4 7

2
64

3
75

AB ¼
5 7 �15

�12 0 20

17 7 �35

2
64

3
75; BA ¼

27 30 33

�22 �24 �26

�27 �30 �33

2
64

3
75

Diagonal and Trace

Let A ¼ ½aij� be an n-square matrix. The diagonal or main diagonal of A consists of the elements with the
same subscripts—that is,

a11; a22; a33; . . . ; ann
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The trace of A, written trðAÞ, is the sum of the diagonal elements. Namely,

trðAÞ ¼ a11 þ a22 þ a33 þ � � �þ ann

The following theorem applies.

THEOREM 2.4: Suppose A ¼ ½aij� and B ¼ ½bij� are n-square matrices and k is a scalar. Then

(i) trðAþ BÞ ¼ trðAÞ þ trðBÞ, (iii) trðAT Þ ¼ trðAÞ,
(ii) trðkAÞ ¼ k trðAÞ, (iv) trðABÞ ¼ trðBAÞ.

EXAMPLE 2.7 Let A and B be the matrices A and B in Example 2.6. Then

diagonal of A ¼ f1;�4; 7g and trðAÞ ¼ 1� 4þ 7 ¼ 4

diagonal of B ¼ f2; 3;�4g and trðBÞ ¼ 2þ 3� 4 ¼ 1

Moreover,

trðAþ BÞ ¼ 3� 1þ 3 ¼ 5; trð2AÞ ¼ 2� 8þ 14 ¼ 8; trðAT Þ ¼ 1� 4þ 7 ¼ 4

trðABÞ ¼ 5þ 0� 35 ¼ �30; trðBAÞ ¼ 27� 24� 33 ¼ �30

As expected from Theorem 2.4,

trðAþ BÞ ¼ trðAÞ þ trðBÞ; trðAT Þ ¼ trðAÞ; trð2AÞ ¼ 2 trðAÞ
Furthermore, although AB 6¼ BA, the traces are equal.

Identity Matrix, Scalar Matrices

The n-square identity or unit matrix, denoted by In, or simply I , is the n-square matrix with 1’s on the
diagonal and 0’s elsewhere. The identity matrix I is similar to the scalar 1 in that, for any n-square matrix
A,

AI ¼ IA ¼ A

More generally, if B is an m	 n matrix, then BIn ¼ ImB ¼ B.
For any scalar k, the matrix kI that contains k’s on the diagonal and 0’s elsewhere is called the scalar

matrix corresponding to the scalar k. Observe that

ðkIÞA ¼ kðIAÞ ¼ kA

That is, multiplying a matrix A by the scalar matrix kI is equivalent to multiplying A by the scalar k.

EXAMPLE 2.8 The following are the identity matrices of orders 3 and 4 and the corresponding scalar
matrices for k ¼ 5:

1 0 0
0 1 0
0 0 1

2
4

3
5;

1
1

1
1

2
664

3
775;

5 0 0
0 5 0
0 0 5

2
4

3
5;

5
5

5
5

2
664

3
775

Remark 1: It is common practice to omit blocks or patterns of 0’s when there is no ambiguity, as
in the above second and fourth matrices.

Remark 2: The Kronecker delta function dij is defined by

dij ¼
0 if i 6¼ j
1 if i ¼ j

	

Thus, the identity matrix may be defined by I ¼ ½dij�.
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2.8 Powers of Matrices, Polynomials in Matrices

Let A be an n-square matrix over a field K. Powers of A are defined as follows:

A2 ¼ AA; A3 ¼ A2A; . . . ; Anþ1 ¼ AnA; . . . ; and A0 ¼ I

Polynomials in the matrix A are also defined. Specifically, for any polynomial

f ðxÞ ¼ a0 þ a1xþ a2x
2 þ � � �þ anx

n

where the ai are scalars in K, f ðAÞ is defined to be the following matrix:

f ðAÞ ¼ a0I þ a1Aþ a2A
2 þ � � �þ anA

n

[Note that f ðAÞ is obtained from f ðxÞ by substituting the matrix A for the variable x and substituting the
scalar matrix a0I for the scalar a0.] If f ðAÞ is the zero matrix, then A is called a zero or root of f ðxÞ.

EXAMPLE 2.9 Suppose A ¼ 1 2
3 �4

� �
. Then

A2 ¼ 1 2
3 �4

� �
1 2
3 �4

� �
¼ 7 �6

�9 22

� �
and A3 ¼ A2A ¼ 7 �6

�9 22

� �
1 2
3 �4

� �
¼ �11 38

57 �106

� �

Suppose f ðxÞ ¼ 2x2 � 3xþ 5 and gðxÞ ¼ x2 þ 3x� 10. Then

f ðAÞ ¼ 2
7 �6

�9 22

� �
� 3

1 2

3 �4

� �
þ 5

1 0

0 1

� �
¼ 16 �18

�27 61

� �

gðAÞ ¼ 7 �6

�9 22

� �
þ 3

1 2

3 �4

� �
� 10

1 0

0 1

� �
¼ 0 0

0 0

� �

Thus, A is a zero of the polynomial gðxÞ.

2.9 Invertible (Nonsingular) Matrices

A square matrix A is said to be invertible or nonsingular if there exists a matrix B such that

AB ¼ BA ¼ I

where I is the identity matrix. Such a matrix B is unique. That is, if AB1 ¼ B1A ¼ I and AB2 ¼ B2A ¼ I ,
then

B1 ¼ B1I ¼ B1ðAB2Þ ¼ ðB1AÞB2 ¼ IB2 ¼ B2

We call such a matrix B the inverse of A and denote it by A�1. Observe that the above relation is
symmetric; that is, if B is the inverse of A, then A is the inverse of B.

EXAMPLE 2.10 Suppose that A ¼ 2 5
1 3

� �
and B ¼ 3 �5

�1 2

� �
. Then

AB ¼ 6� 5 �10þ 10
3� 3 �5þ 6

� �
¼ 1 0

0 1

� �
and BA ¼ 6� 5 15� 15

�2þ 2 �5þ 6

� �
¼ 1 0

0 1

� �

Thus, A and B are inverses.

It is known (Theorem 3.16) that AB ¼ I if and only if BA ¼ I . Thus, it is necessary to test only one
product to determine whether or not two given matrices are inverses. (See Problem 2.17.)

Now suppose A and B are invertible. Then AB is invertible and ðABÞ�1 ¼ B�1A�1. More generally, if
A1;A2; . . . ;Ak are invertible, then their product is invertible and

ðA1A2 . . .AkÞ�1 ¼ A�1
k . . .A�1

2 A�1
1

the product of the inverses in the reverse order.
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Inverse of a 2	2 Matrix

Let A be an arbitrary 2	 2 matrix, say A ¼ a b
c d

� �
. We want to derive a formula for A�1, the inverse

of A. Specifically, we seek 22 ¼ 4 scalars, say x1, y1, x2, y2, such that

a b
c d

� �
x1 x2
y1 y2

� �
¼ 1 0

0 1

� �
or

ax1 þ by1 ax2 þ by2
cx1 þ dy1 cx2 þ dy2

� �
¼ 1 0

0 1

� �

Setting the four entries equal to the corresponding entries in the identity matrix yields four equations,
which can be partitioned into two 2	 2 systems as follows:

ax1 þ by1 ¼ 1; ax2 þ by2 ¼ 0

cx1 þ dy1 ¼ 0; cx2 þ dy2 ¼ 1

Suppose we let jAj ¼ ab� bc (called the determinant of A). Assuming jAj 6¼ 0, we can solve uniquely for
the above unknowns x1, y1, x2, y2, obtaining

x1 ¼
d

jAj ; y1 ¼
�c

jAj ; x2 ¼
�b

jAj ; y2 ¼
a

jAj
Accordingly,

A�1 ¼ a b
c d

� ��1

¼ d=jAj �b=jAj
�c=jAj a=jAj

� �
¼ 1

jAj
d �b

�c a

� �

In other words, when jAj 6¼ 0, the inverse of a 2	 2 matrix A may be obtained from A as follows:

(1) Interchange the two elements on the diagonal.

(2) Take the negatives of the other two elements.

(3) Multiply the resulting matrix by 1=jAj or, equivalently, divide each element by jAj.
In case jAj ¼ 0, the matrix A is not invertible.

EXAMPLE 2.11 Find the inverse of A ¼ 2 3
4 5

� �
and B ¼ 1 3

2 6

� �
.

First evaluate jAj ¼ 2ð5Þ� 3ð4Þ ¼ 10� 12 ¼ �2. Because jAj 6¼ 0, the matrix A is invertible and

A�1 ¼ 1

�2

5 �3
�4 2

� �
¼ � 5

2
3
2

2 �1

� �

Now evaluate jBj ¼ 1ð6Þ� 3ð2Þ ¼ 6� 6 ¼ 0. Because jBj ¼ 0, the matrix B has no inverse.

Remark: The above property that a matrix is invertible if and only if A has a nonzero determinant
is true for square matrices of any order. (See Chapter 8.)

Inverse of an n	 n Matrix

Suppose A is an arbitrary n-square matrix. Finding its inverse A�1 reduces, as above, to finding the
solution of a collection of n	 n systems of linear equations. The solution of such systems and an efficient
way of solving such a collection of systems is treated in Chapter 3.

2.10 Special Types of Square Matrices

This section describes a number of special kinds of square matrices.

Diagonal and Triangular Matrices

A square matrix D ¼ ½dij� is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes
denoted by

D ¼ diagðd11; d22; . . . ; dnnÞ
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where some or all the dii may be zero. For example,

3 0 0
0 �7 0
0 0 2

2
4

3
5; 4 0

0 �5

� �
;

6
0

�9
8

2
664

3
775

are diagonal matrices, which may be represented, respectively, by

diagð3;�7; 2Þ; diagð4;�5Þ; diagð6; 0;�9; 8Þ
(Observe that patterns of 0’s in the third matrix have been omitted.)

A square matrix A ¼ ½aij� is upper triangular or simply triangular if all entries below the (main)
diagonal are equal to 0—that is, if aij ¼ 0 for i > j. Generic upper triangular matrices of orders 2, 3, 4 are
as follows:

a11 a12
0 a22

� �
;

b11 b12 b13
b22 b23

b33

2
4

3
5;

c11 c12 c13 c14
c22 c23 c24

c33 c34
c44

2
664

3
775

(As with diagonal matrices, it is common practice to omit patterns of 0’s.)
The following theorem applies.

THEOREM 2.5: Suppose A ¼ ½aij� and B ¼ ½bij� are n	 n (upper) triangular matrices. Then

(i) Aþ B, kA, AB are triangular with respective diagonals:

ða11 þ b11; . . . ; ann þ bnnÞ; ðka11; . . . ; kannÞ; ða11b11; . . . ; annbnnÞ

(ii) For any polynomial f ðxÞ, the matrix f ðAÞ is triangular with diagonal

ð f ða11Þ; f ða22Þ; . . . ; f ðannÞÞ

(iii) A is invertible if and only if each diagonal element aii 6¼ 0, and when A�1 exists
it is also triangular.

A lower triangular matrix is a square matrix whose entries above the diagonal are all zero. We note
that Theorem 2.5 is true if we replace ‘‘triangular’’ by either ‘‘lower triangular’’ or ‘‘diagonal.’’

Remark: A nonempty collection A of matrices is called an algebra (of matrices) if A is closed
under the operations of matrix addition, scalar multiplication, and matrix multiplication. Clearly, the
square matrices with a given order form an algebra of matrices, but so do the scalar, diagonal, triangular,
and lower triangular matrices.

Special Real Square Matrices: Symmetric, Orthogonal, Normal
[Optional until Chapter 12]

Suppose now A is a square matrix with real entries—that is, a real square matrix. The relationship
between A and its transpose AT yields important kinds of matrices.

(a) Symmetric Matrices

A matrix A is symmetric if AT ¼ A. Equivalently, A ¼ ½aij� is symmetric if symmetric elements (mirror
elements with respect to the diagonal) are equal—that is, if each aij ¼ aji.

A matrix A is skew-symmetric if AT ¼ �A or, equivalently, if each aij ¼ �aji. Clearly, the diagonal
elements of such a matrix must be zero, because aii ¼ �aii implies aii ¼ 0.

(Note that a matrix A must be square if AT ¼ A or AT ¼ �A.)
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EXAMPLE 2.12 Let A ¼
2 �3 5

�3 6 7
5 7 �8

2
4

3
5;B ¼

0 3 �4
�3 0 5
4 �5 0

2
4

3
5;C ¼ 1 0 0

0 0 1

� �
:

(a) By inspection, the symmetric elements in A are equal, or AT ¼ A. Thus, A is symmetric.

(b) The diagonal elements of B are 0 and symmetric elements are negatives of each other, or BT ¼ �B.
Thus, B is skew-symmetric.

(c) Because C is not square, C is neither symmetric nor skew-symmetric.

(b) Orthogonal Matrices

A real matrix A is orthogonal if AT ¼ A�1—that is, if AAT ¼ ATA ¼ I . Thus, A must necessarily be
square and invertible.

EXAMPLE 2.13 Let A ¼
1
9

8
9 � 4

9
4
9 � 4

9 � 7
9

8
9

1
9

4
9

2
64

3
75. Multiplying A by AT yields I ; that is, AAT ¼ I . This means

ATA ¼ I , as well. Thus, AT ¼ A�1; that is, A is orthogonal.

Now suppose A is a real orthogonal 3	 3 matrix with rows

u1 ¼ ða1; a2; a3Þ; u2 ¼ ðb1; b2; b3Þ; u3 ¼ ðc1; c2; c3Þ
Because A is orthogonal, we must have AAT ¼ I . Namely,

AAT ¼
a1 a2 a3
b1 b2 b3
c1 c2 c3

2
4

3
5

a1 b1 c1
a2 b2 c2
a3 b3 c3

2
4

3
5 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5 ¼ I

Multiplying A by AT and setting each entry equal to the corresponding entry in I yields the following nine
equations:

a21 þ a22 þ a23 ¼ 1; a1b1 þ a2b2 þ a3b3 ¼ 0; a1c1 þ a2c2 þ a3c3 ¼ 0
b1a1 þ b2a2 þ b3a3 ¼ 0; b21 þ b22 þ b23 ¼ 1; b1c1 þ b2c2 þ b3c3 ¼ 0
c1a1 þ c2a2 þ c3a3 ¼ 0; c1b1 þ c2b2 þ c3b3 ¼ 0; c21 þ c22 þ c23 ¼ 1

Accordingly, u1 � u1 ¼ 1, u2 � u2 ¼ 1, u3 � u3 ¼ 1, and ui � uj ¼ 0 for i 6¼ j. Thus, the rows u1, u2, u3 are
unit vectors and are orthogonal to each other.

Generally speaking, vectors u1, u2; . . . ; um in Rn are said to form an orthonormal set of vectors if the
vectors are unit vectors and are orthogonal to each other; that is,

ui � uj ¼
0 if i 6¼ j
1 if i ¼ j

	

In other words, ui � uj ¼ dij where dij is the Kronecker delta function:
We have shown that the condition AAT ¼ I implies that the rows of A form an orthonormal set of

vectors. The condition ATA ¼ I similarly implies that the columns of A also form an orthonormal set
of vectors. Furthermore, because each step is reversible, the converse is true.

The above results for 3	 3 matrices are true in general. That is, the following theorem holds.

THEOREM 2.6: Let A be a real matrix. Then the following are equivalent:
(a) A is orthogonal.
(b) The rows of A form an orthonormal set.
(c) The columns of A form an orthonormal set.

For n ¼ 2, we have the following result (proved in Problem 2.28).
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THEOREM 2.7: Let A be a real 2	 2 orthogonal matrix. Then, for some real number y,

A ¼ cos y sin y
� sin y cos y

� �
or A ¼ cos y sin y

sin y � cos y

� �

(c) Normal Matrices

A real matrix A is normal if it commutes with its transpose AT—that is, if AAT ¼ ATA. If A is symmetric,
orthogonal, or skew-symmetric, then A is normal. There are also other normal matrices.

EXAMPLE 2.14 Let A ¼ 6 �3
3 6

� �
. Then

AAT ¼ 6 �3
3 6

� �
6 3

�3 6

� �
¼ 45 0

0 45

� �
and ATA ¼ 6 3

�3 6

� �
6 �3
3 6

� �
¼ 45 0

0 45

� �

Because AAT ¼ ATA, the matrix A is normal.

2.11 Complex Matrices

Let A be a complex matrix—that is, a matrix with complex entries. Recall (Section 1.7) that if z ¼ aþ bi
is a complex number, then �z ¼ a� bi is its conjugate. The conjugate of a complex matrix A, written �A, is
the matrix obtained from A by taking the conjugate of each entry in A. That is, if A ¼ ½aij�, then �A ¼ ½bij�,
where bij ¼ �aij. (We denote this fact by writing �A ¼ ½�aij�.)

The two operations of transpose and conjugation commute for any complex matrix A, and the special
notation AH is used for the conjugate transpose of A. That is,

AH ¼ ð �AÞT ¼ ðAT Þ
Note that if A is real, then AH ¼ AT . [Some texts use A* instead of AH :]

EXAMPLE 2.15 Let A ¼ 2þ 8i 5� 3i 4� 7i
6i 1� 4i 3þ 2i

� �
. Then AH ¼

2� 8i �6i
5þ 3i 1þ 4i
4þ 7i 3� 2i

2
4

3
5.

Special Complex Matrices: Hermitian, Unitary, Normal [Optional until Chapter 12]

Consider a complex matrix A. The relationship between A and its conjugate transpose AH yields
important kinds of complex matrices (which are analogous to the kinds of real matrices described above).

A complex matrix A is said to be Hermitian or skew-Hermitian according as to whether

AH ¼ A or AH ¼ �A:

Clearly, A ¼ ½aij� is Hermitian if and only if symmetric elements are conjugate—that is, if each
aij ¼ �aji—in which case each diagonal element aii must be real. Similarly, if A is skew-symmetric,
then each diagonal element aii ¼ 0. (Note that A must be square if AH ¼ A or AH ¼ �A.)

A complex matrix A is unitary if AHA�1 ¼ A�1AH ¼ I—that is, if

AH ¼ A�1:

Thus, A must necessarily be square and invertible. We note that a complex matrix A is unitary if and only
if its rows (columns) form an orthonormal set relative to the dot product of complex vectors.

A complex matrix A is said to be normal if it commutes with AH—that is, if

AAH ¼ AHA
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(Thus, A must be a square matrix.) This definition reduces to that for real matrices when A is real.

EXAMPLE 2.16 Consider the following complex matrices:

A ¼
3 1� 2i 4þ 7i

1þ 2i �4 �2i
4� 7i 2i 5

2
4

3
5 B ¼ 1

2

1 �i �1þ i
i 1 1þ i

1þ i �1þ i 0

2
4

3
5 C ¼ 2þ 3i 1

i 1þ 2i

� �

(a) By inspection, the diagonal elements of A are real, and the symmetric elements 1� 2i and 1þ 2i are
conjugate, 4þ 7i and 4� 7i are conjugate, and �2i and 2i are conjugate. Thus, A is Hermitian.

(b) Multiplying B by BH yields I ; that is, BBH ¼ I . This implies BHB ¼ I , as well. Thus, BH ¼ B�1,
which means B is unitary.

(c) To show C is normal, we evaluate CCH and CHC:

CCH ¼ 2þ 3i 1
i 1þ 2i

� �
2� 3i �i
1 1� 2i

� �
¼ 14 4� 4i

4þ 4i 6

� �

and similarly CHC ¼ 14 4� 4i
4þ 4i 6

� �
. Because CCH ¼ CHC, the complex matrix C is normal.

We note that when a matrix A is real, Hermitian is the same as symmetric, and unitary is the same as
orthogonal.

2.12 Block Matrices

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix A into submatrices
called blocks (or cells) of A. Clearly a given matrix may be divided into blocks in different ways. For
example,

1 �2 0 1 3
2 3 5 7 �2
3 1 4 5 9
4 6 �3 1 8

2
664

3
775;

1 �2 0 1 3
2 3 5 7 �2
3 1 4 5 9
4 6 �3 1 8

2
664

3
775;

1 �2 0 1 3
2 3 5 7 �2
3 1 4 5 9
4 6 �3 1 8

2
664

3
775

The convenience of the partition of matrices, say A and B, into blocks is that the result of operations on A
and B can be obtained by carrying out the computation with the blocks, just as if they were the actual
elements of the matrices. This is illustrated below, where the notation A ¼ ½Aij� will be used for a block
matrix A with blocks Aij.

Suppose that A ¼ ½Aij� and B ¼ ½Bij� are block matrices with the same numbers of row and column
blocks, and suppose that corresponding blocks have the same size. Then adding the corresponding blocks
of A and B also adds the corresponding elements of A and B, and multiplying each block of A by a scalar
k multiplies each element of A by k. Thus,

Aþ B ¼

A11 þ B11 A12 þ B12 . . . A1n þ B1n

A21 þ B21 A22 þ B22 . . . A2n þ B2n

. . . . . . . . . . . .

Am1 þ Bm1 Am2 þ Bm2 . . . Amn þ Bmn

2
6664

3
7775

and

kA ¼
kA11 kA12 . . . kA1n

kA21 kA22 . . . kA2n

. . . . . . . . . . . .
kAm1 kAm2 . . . kAmn

2
664

3
775
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The case of matrix multiplication is less obvious, but still true. That is, suppose that U ¼ ½Uik � and
V ¼ ½Vkj� are block matrices such that the number of columns of each block Uik is equal to the number of
rows of each block Vkj. (Thus, each product UikVkj is defined.) Then

UV ¼
W11 W12 . . . W1n

W21 W22 . . . W2n

. . . . . . . . . . . .
Wm1 Wm2 . . . Wmn

2
664

3
775; where Wij ¼ Ui1V1j þ Ui2V2j þ � � �þ UipVpj

The proof of the above formula for UV is straightforward but detailed and lengthy. It is left as an exercise
(Problem 2.85).

Square Block Matrices

Let M be a block matrix. Then M is called a square block matrix if

(i) M is a square matrix.
(ii) The blocks form a square matrix.
(iii) The diagonal blocks are also square matrices.

The latter two conditions will occur if and only if there are the same number of horizontal and vertical
lines and they are placed symmetrically.

Consider the following two block matrices:

A ¼

1 2 3 4 5
1 1 1 1 1
9 8 7 6 5
4 4 4 4 4
3 5 3 5 3

2
66664

3
77775

and B ¼

1 2 3 4 5
1 1 1 1 1
9 8 7 6 5
4 4 4 4 4
3 5 3 5 3

2
66664

3
77775

The block matrix A is not a square block matrix, because the second and third diagonal blocks are not
square. On the other hand, the block matrix B is a square block matrix.

Block Diagonal Matrices

Let M ¼ ½Aij� be a square block matrix such that the nondiagonal blocks are all zero matrices; that is,
Aij ¼ 0 when i 6¼ j. Then M is called a block diagonal matrix. We sometimes denote such a block
diagonal matrix by writing

M ¼ diagðA11;A22; . . . ;ArrÞ or M ¼ A11 
 A22 
 � � � 
 Arr

The importance of block diagonal matrices is that the algebra of the block matrix is frequently reduced to
the algebra of the individual blocks. Specifically, suppose f ðxÞ is a polynomial and M is the above block
diagonal matrix. Then f ðMÞ is a block diagonal matrix, and

f ðMÞ ¼ diagð f ðA11Þ; f ðA22Þ; . . . ; f ðArrÞÞ

Also, M is invertible if and only if each Aii is invertible, and, in such a case, M�1 is a block diagonal
matrix, and

M�1 ¼ diagðA�1
11 ;A

�1
22 ; . . . ;A

�1
rr Þ

Analogously, a square block matrix is called a block upper triangular matrix if the blocks below the
diagonal are zero matrices and a block lower triangular matrix if the blocks above the diagonal are zero
matrices.
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EXAMPLE 2.17 Determine which of the following square block matrices are upper diagonal, lower
diagonal, or diagonal:

A ¼
1 2 0
3 4 5
0 0 6

2
4

3
5; B ¼

1 0 0 0
2 3 4 0
5 0 6 0
0 7 8 9

2
664

3
775; C ¼

1 0 0
0 2 3
0 4 5

2
4

3
5; D ¼

1 2 0
3 4 5
0 6 7

2
4

3
5

(a) A is upper triangular because the block below the diagonal is a zero block.

(b) B is lower triangular because all blocks above the diagonal are zero blocks.

(c) C is diagonal because the blocks above and below the diagonal are zero blocks.

(d) D is neither upper triangular nor lower triangular. Also, no other partitioning of D will make it into
either a block upper triangular matrix or a block lower triangular matrix.

SOLVED PROBLEMS

Matrix Addition and Scalar Multiplication

2.1 Given A ¼ 1 �2 3
4 5 �6

� �
and B ¼ 3 0 2

�7 1 8

� �
, find:

(a) Aþ B, (b) 2A� 3B.

(a) Add the corresponding elements:

Aþ B ¼ 1þ 3 �2þ 0 3þ 2

4� 7 5þ 1 �6þ 8

� �
¼ 4 �2 5

�3 6 2

� �

(b) First perform the scalar multiplication and then a matrix addition:

2A� 3B ¼ 2 �4 6

8 10 �12

� �
þ �9 0 �6

21 �3 �24

� �
¼ �7 �4 0

29 7 �36

� �

(Note that we multiply B by �3 and then add, rather than multiplying B by 3 and subtracting. This usually
prevents errors.)

2.2. Find x; y; z; t where 3
x y
z t

� �
¼ x 6

�1 2t

� �
þ 4 xþ y

zþ t 3

� �
:

Write each side as a single equation:

3x 3y

3z 3t

� �
¼ xþ 4 xþ yþ 6

zþ t� 1 2tþ 3

� �

Set corresponding entries equal to each other to obtain the following system of four equations:

3x ¼ xþ 4; 3y ¼ xþ yþ 6; 3z ¼ zþ t � 1; 3t ¼ 2t þ 3

or 2x ¼ 4; 2y ¼ 6þ x; 2z ¼ t � 1; t ¼ 3

The solution is x ¼ 2, y ¼ 4, z ¼ 1, t ¼ 3.

2.3. Prove Theorem 2.1 (i) and (v): (i) ðAþ BÞ þ C ¼ Aþ ðBþ CÞ, (v) kðAþ BÞ ¼ kAþ kB.
Suppose A ¼ ½aij�, B ¼ ½bij�, C ¼ ½cij�. The proof reduces to showing that corresponding ij-entries
in each side of each matrix equation are equal. [We prove only (i) and (v), because the other parts
of Theorem 2.1 are proved similarly.]
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