Polynomials: The Make 'Em and Break 'Em Game:

Challenge:
Make the most ridiculously complicated polynomial by multiplying as many binomials as you can!
I will factor them on the spot.

For example:
Consider:
y = (x+3) * (x-5) * (x+1) * ... * (x-243) * (x+14.707) * ...
The roots of that polynomial are where y=0. These occur at x = {-3, +5, -1, ..., +243, -14.707, ...}

DO NOT TELL ME THE ROOTS YOU USED.
JUST TELL ME THE RESULTING COEFFICIENTS OF THE POLYNOMIAL.

) SciPy.org & «imovenr

MumPy v1.8 Manual MumPy Reference Routines Polynomials

numpy.roots

numpy.roots(p) [source]
Return the roots of a polynomial with coefficients given in p.

The values in the rank-1 array p are coefficients of a polynomial. If the length of pis n+1 then
the polynomial is described by:

pla] * x**n + p[1] * x**(n-1}) + ... + pln-11*x + plnl]

Parameters: p :array_like
Rank-1 array of polynomial coefficients.

Returns: out : ndarray
An array containing the complex roots of the polynomial.
Raises: ValueError

When p cannot be converted to a rank-1 array.

See also:

poly Find the coefficients of a polynomial with a given sequence of roots.
polywval Evaluate a polynomial at a point.

pohyfit Least squares polynomial fit.

polyld A one-dimensional polynomial class.

MNotes

The algorithm relies on computing the eigenvalues of the companion matrix [R241].

References

{1, 2)R. A.Horn & C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge
University Press, 1999, pp. 146-7.

Examples

=
=>> coeff = [3.2, 2, 1]
=>> np.roots(coeff)

array([-0.3125+0.46351241j, -0.3125-0.46351241j1)

