Polynomials: The Make 'Em and Break 'Em Game:

Challenge:

Make the most ridiculously complicated polynomial by multiplying as many binomials as you can! I will factor them on the spot.

For example:

Consider:

y = (x+3) * (x-5) * (x+1) * ... * (x-243) * (x+14.707) * ...

The roots of that polynomial are where y=0. These occur at $x = \{-3, +5, -1, \dots, +243, -14.707, \dots\}$

DO NOT TELL ME THE ROOTS YOU USED. JUST TELL ME THE RESULTING COEFFICIENTS OF THE POLYNOMIAL.

Scipy.org Docs NumPy v1.8 Manual NumPy Reference

SciPy.org C Sports of By

numpy.roots

numpy.roots(p)

Return the roots of a polynomial with coefficients given in p.

The values in the rank-1 array *p* are coefficients of a polynomial. If the length of *p* is n+1 then the polynomial is described by:

Routines

Polynomials

Poly1

[source]

 $p[0] * x^{**n} + p[1] * x^{**}(n-1) + ... + p[n-1]^{*}x + p[n]$

Parameters :	p : array_like
	Rank-1 array of polynomial coefficients.
Returns :	out : ndarray
	An array containing the complex roots of the polynomial.
Raises :	ValueError
	When <i>p</i> cannot be converted to a rank-1 array.
See also:	

See also.	
poly	Find the coefficients of a polynomial with a given sequence of roots.
polyval	Evaluate a polynomial at a point.
polyfit	Least squares polynomial fit.
poly1d	A one-dimensional polynomial class.

Notes

The algorithm relies on computing the eigenvalues of the companion matrix [R241].

References

[R241] (1, 2) R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7.

Examples

```
>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])
```

>>>